


21st European Young Statisticians meeting – Proceedings

Published by Faculty of Mathematics, Studentski trg 16, Belgrade

For publisher: Zoran Rakić, dean
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Preface

European Young Statisticians Meetings are organized every two years under the
auspices of the European Regional Committee of the Bernoulli Society for Math-
ematical Statistics and Probability. The aim is to provide a scientific forum for
the next generation of European researchers in probability theory and statistics.
It represents an excellent opportunity to promote new collaborations and interna-
tional cooperation. Participants are less than 30 years old or have 2 to 8 years of
research experience, and are invited on the basis of their scientific achievements, in
a uniformly distributed way in Europe (at most 2 participants per country). The
International Organizing Committee (IOC) is responsible for their selection.

There were twenty seven European countries participating at the 21st EYSM. The
scientific part of the Conference was organized as follows:

• [-] five eminent scientists from the field of mathematical statistics and proba-
bility gave 60-minutes keynote lectures

• [-] forty eight invited young scientists gave 20-minutes lectures.

The topics presented include, but are not limited to

• Applied statistics in biology, medicine, ...

• Bayesian inference

• Characterizations of probability distributions

• Extreme and record value theory

• Functional statistics

• Goodness-of-fit testing

• High-dimensional statistics

• Regression models

• Robust estimation
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• Spatial statistics

• Stochastic processes

• Survival analysis

• Time series analysis

More information about the Conference such as scientific program, abstracts of all
given lectures, the list of participants together with their affiliations and contact
information, is available in the Book of Abstracts, and at the Conference website
www.eysm2019.matf.bg.ac.rs .
These Proceedings contain short papers that went through the peer review process
organized by the IOC, in the way that the IOC representatives proposed reviewers
for papers of participants they invited or personally acted as a referee.
We would like to thank the Bernoulli society for giving us the opportunity to or-
ganize this lovely event. We are also thankful to the members of the International
Organizing Committee for selecting prominent young scientists to attend this con-
ference, as well as to the reviewers of the papers published in the conference proceed-
ings. We would also like to express our deep gratitude to our student-volunteers, in
the hope that this event will be a driving force for their future academic achieve-
ments. We also appreciate very much the help of the staff of the Faculty of Math-
ematics. A special thanks goes to our sponsors and the Ministry of Education,
Science and Technical Development of the Republic of Serbia for their assistance.
Last, but not least, we thank all keynote speakers and young participants for pro-
viding an excellent scientific program, and great vibes that made this event special.

Belgrade, September 2019 Local organizing committee

http://eysm2019.matf.bg.ac.rs/publications.html
 www.eysm2019.matf.bg.ac.rs
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Nenad Šuvak, University of Osijek, Croatia



iv 29 July–2 August 2019, Belgrade, Serbia

Nina Munkholt Jakobsen, Technical University of Denmark, Denmark
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Two types of Bayesian excursion set estimates
based on Gaussian process models

Dario Azzimonti1∗

1Dalle Molle Institute for Artificial Intelligence, Lugano, Switzerland

Abstract: We consider the problem of estimating the set of points where an
unknown real-valued function is above a certain threshold in the setting where
only few function evaluations are available. In a Bayesian framework, we estimate
the function with a Gaussian process (GP) regression model and we study the
excursion set of the posterior GP distribution which is a random set. The posterior
expectation of this random set provides an estimate for the unknown excursion
set. We review here two random closed set expectations: the distance average
expectation and the Vorob’ev expectation. We compare them empirically on a novel
example that shows that Vorob’ev estimates are less informative if the measure of
the set is hard to estimate. This intuition suggests a new definition of conservative
estimate for excursion sets.

Keywords: Gaussian process, excursion set estimation, experimental design.

AMS subject classification: 62M30, 60G15

1 Introduction

We consider the problem of estimating an excursion set for an unknown expensive
to evaluate function. More formally, our object of interest is the set

Γ∗ = {x ∈ X : f(x) ≥ t}, (1)

where X ⊂ Rd, and f : X ⊂ Rd → R is an unknown expensive to evaluate function.
Such problems can be found, for example, in reliability engineering [6, 4] where
Γ∗ represents safe configurations for a particular system and the function is often
evaluated with a (possibly noisy) computer experiment.
In this paper, we estimate the function f with a Gaussian process (GP) regression
model [10], and then we use the posterior distribution of the process to obtain
estimates for Γ∗. In particular here we compare two types of set estimates based
on two random closed set expectations: the Vorob’ev expectation [9, 7] and the
distance average expectation [9, 2].

∗Corresponding author: dario.azzimonti@idsia.ch
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2 Gaussian process regression

A Gaussian process ξ ∼ GP (m, k) with mean function m : X→ R and positive def-
inite kernel k : X× X→ R, is a stochastic process such that, for any x1, . . . , x` ∈ X
and any ` > 0, the vector [ξx1

, . . . , ξx` ]
T is a multivariate Gaussian with mean

[m(x1), . . . ,m(x`)]
T and covariance matrix K` = [k(xi, xj)]i,j=1,...,`. In a Bayesian

setting, this stochastic process defines a prior over functions, and, given an ob-
servation model, we can estimate the true function by looking at the posterior
distribution of the GP.
We consider n function evaluations fn = [f(x1), . . . , f(xn)] ∈ Rn, possibly corrupted
by noise, i.e. we have xn = [x1, . . . , xn] and yn = [y1, . . . , yn], where yi = f(xi)+εi,
i = 1, . . . , n, with εi independent measurement noise. We assume that the unknown
function f is a realization of ξ ∼ GP (m, k), i.e. p(fn) = N(m(xn),Kn), where
Kn = [k(xi, xj)]i=1,...,n. The likelihood of the observations is Gaussian, i.e. p(yn |
fn) = N(fn, σ

2
noiseIn) where σ2

noise is the noise variance and In ∈ Rn×n is the identity
matrix. By exploiting Bayes theorem we can compute the posterior distribution

p(fn | yn) = p(fn)p(yn|fn)
p(yn) . In the GP regression case the posterior has the remarkable

property of being normally distributed with analytical formulae for the posterior
mean mn and covariance kn, see, e.g. [10], chapter 1.
In practice the covariance kernel k often depends on hyper-parameters which, along
with σ2

noise and possibly some parameters describing the mean function m, are usu-
ally unknown. Several techniques are available in this case, see, e.g. [12], chapters 3,
4. Our focus here is on the set estimation part, so we always assume that all hyper-
parameters are given and we omit conditioning on the hyper-parameters in our
notation. In the experimental section we plug-in maximum likelihood estimators
for the kernel hyper-parameters and use an empirical Bayes estimator for p(fn | yn)
which is still Gaussian in this case.

3 Set estimation

In order to provide estimates for Γ∗ we exploit the posterior distribution of the GP.
We assume that the process ξ is continuous, then Γ = {x ∈ X : ξ(x) ≥ t} is a
random closed set. The posterior distribution of ξ induces a posterior random set
Γ and, by taking its expectation, we obtain an estimate for Γ∗. There is no unique
definition for E [Γ], see [9, 1] for a more comprehensive treatment; here we compare
the Vorob’ev and the distance average expectation.

Vorob’ev expectation

A key tool for computing the Vorob’ev expectation is the posterior coverage proba-
bility, defined, for x ∈ X, as

pn(x) = P (x ∈ Γ | ξn = yn) = Pn(x ∈ Γ),
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Since the process ξ is Gaussian, the coverage probability can be computed as

pn(x) = Φ

(
mn(x)−t√
kn(x,x)

)
, where Φ(·) is the CDF of a standard Normal random

variable, mn and kn are the posterior mean and covariance kernel [7, 1]. By thresh-
olding the function pn, we define a family of set estimates {Qρ : ρ ∈ [0, 1]} called
Vorob’ev quantiles, where Qρ = {x ∈ X : pn(x) ≥ ρ}.
The Vorob’ev expectation chooses a specific value for ρ by exploiting the notion
of a finite measure on X, here denoted by µ. Depending on the application,
the measure µ has different meanings, for example, if the input space is com-
pact, µ is often the volume; in other applications µ is a probability distribution
on X. The Vorob’ev expectation [9, 7, 1] is then the quantile with the closest
measure to the (posterior) expected measure of Γ, i.e. the quantile QρV with
ρV ∈ arg minρ∈[0,1] | µ(Qρ)− E [µ(Γ) | ξn = yn] |.

Distance average expectation

The Vorob’ev approach is based on the definition of a measure µ on X. The distance
average expectation is instead built on a notion of distance. For simplicity we
consider here the Euclidean distance, however the notion can be generalized [9, 1].
Let us denote with δ(x, x′) the Euclidean distance between x, x′ ∈ X. The distance
function of set A ⊂ X is defined as

d(x,A) = inf{δ(x, y) : y ∈ A}, for x ∈ X.

If A = Γ is a random set, then d(x,Γ) is a random variable for each x ∈ X, we
define the mean distance function as d̄(x) = E [d(x,Γ)] for each x ∈ X. We build a
family of possible set estimates Du = {x ∈ X : d̄(x) ≤ u}, defined by thresholding
d̄. The distance average expectation is then the set Du∗ where

u∗ ∈ arg min
u>0

(∫
X

(d(t,Du)− d̄(x))2dt

)1/2

.

See [2] for an application of this expectation to the set estimation problem described
earlier. In that paper, the authors also propose a fast approximate method to
generate posterior realizations of Γ that can be used to empirically compute d̄ and
the distance average expectation Du∗ .

Comparison

We now compare the two expectations previously reviewed on the following family
of functions designed to highlight their differences. We consider

f(x1, x2; γ) = 5e−5γ(x2
1−x2−x2

2)
2

(2)

indexed by γ ∈ (0, 1], where x = (x1, x2) ∈ R2 and the excursion set Γ∗ = {f(x) ≥ t}
with t = 4. This family of functions has the property that, by increasing γ, Γ∗
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Figure 1: Analytical function in equation (2), two values for γ.
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Figure 2: Indicators for Γ∗
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Figure 3: Average rank of µ(Γ∗∆A)

becomes “thinner”, i.e. its volume decreases faster than its perimeter. Figure 2
shows the volume and perimeter of Γ∗ for different γ, relative to their values when
γ = 1. As γ increases, the perimeter does not change significantly while the volume
decreases by 4 times.
We consider a GP model built with n = 100 function evaluations at a design of
experiments (DoE) chosen to always have points inside the excursion set. We com-
pute the Vorob’ev expectation, QρV , with the usual volume and the distance average
expectation, Du∗ , with the Euclidean distance. Figure 1 shows the posterior GP
mean computed on n = 100 evaluations of f , the true excursion set computed with
10000 evaluations of f on a grid and the set estimates for two values of γ. We
compare the two estimates with two metrics. The first one is the true distance
in measure with respect to Γ∗, i.e. µ(Γ∗∆A)1 where A = QρV or Du∗ , µ is the
usual volume and Γ∗ is computed from 10000 evaluations of f . The second one is
the squared L2 norm of the difference between the distance function d(·,Γ∗) and
d(·, A), i.e. dL2(Γ∗, A) :=

∫
X(d(x,Γ∗)− d(x,A))2dx, where A and Γ∗ are computed

as described above. We repeat the experiment 30 times with different (randomized)
DoEs2. Figure 3 shows the average rank of µ(Γ∗∆A) for the two expectations over
all repetitions as a function of γ. The metric dL2(Γ∗, A) shows a similar behavior:
table 1 reports the average value of the metric for three values of γ and the average
rank in parenthesis.
In this example, both metrics seem to confirm that as the set volume decreases, thus
becoming a less informative quantity for identifying the set, the distance average
becomes a better estimator for Γ∗.

1A∆B = A \B ∪B \A
2Run in R, packages DiceKriging[11], DiceDesign[8], pGPx[2] available on CRAN
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γ = 0.05 γ = 0.5 γ = 1

Vorob’ev 7.52 · 10−4 (1.63) 1.84 · 10−3 (1.9) 1.98 · 10−3 (1.9)
Distance Avg 7.31 · 10−4 (1.37) 1.43 · 10−3 (1.1) 1.45 · 10−3 (1.1)

Table 1: Average values (rank) of dL2(Γ∗, A) for the two expectations.

4 Conservative estimation

In some applications, such as, e.g., reliability engineering [4] or climatology [5],
we would like to constrain our estimates in such a way that only regions with
high probability of excursion are selected. Conservative estimates, as developed in
[5, 3, 4], provide such probabilistic guarantee.
The idea is to select a set estimate that has probability at least α ≈ 1 to be
inside Γ. Since the empty set is always included in Γ, we can obtain non trivial
estimates by selecting the “largest” estimate, according to some indicator, that
satisfies the probabilistic inclusion. In full generality, let us consider a family of set
estimates C = {Cθ, θ ∈ Θ}, where each set Cθ is an estimate indexed by a parameter
θ ∈ Θ ⊂ Rk, then a conservative estimate for Γ at level α is a set Cθ∗ with

θ∗ ∈ arg max
θ∈Θ
{I(Cθ) : Pn(Cθ ⊂ Γ) ≥ α} (3)

where I : C → R+ associates to each set a value, such as its volume, measure or
diameter. In practice, different choices for C and I lead to different estimates.
Usually, [5, 3, 4], C is the family of Vorob’ev quantiles {Qρ, ρ ∈ [0, 1]} and I(·)
is a measure µ on X. A conservative estimate with these choices is the largest (in
terms of measure) Vorob’ev quantile such that P (Qρ ⊂ Γ) ≥ α. See [3] for a full
implementation with a fast method to compute Pn(Qρ ⊂ Γ) and [4] for sequential
strategies to reduce the uncertainty on such estimates.
The comparison shown in the previous section, suggests that, when an informative
measure µ is not available, an alternative choice based on the distance average could
be useful. In this case a valid alternative could be a conservative estimate based
on distance average where C is the family {Du : u ≥ 0} as defined in section 3 and
I(·) as the diameter of the set, defined as diam(A) = sup{δ(x, x′) : x, x′ ∈ A}. This
estimate only depends on the metric δ and can be computed by empirically esti-
mating the probability of inclusion with the pseudo-realizations method introduced
in [2].

5 Conclusion

In this paper we briefly reviewed two types of estimators for Γ∗ and we showed,
on a novel synthetic example, how the distance average expectation might provide
better estimates when the measure of the set is not very informative. The con-
clusion is dependent on the metrics we used to evaluate how informative is the
estimator. Nonetheless the observation above could lead to an alternative defini-
tion of conservative estimates. We proposed the first steps towards computing this
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estimate, however more studies are required to better analyze the advantages of
distance average based conservative estimates.

Acknowledgements: The author acknowledges support from the SNSF, grant
number 167199. The topics presented here are mostly the results of joint works
with: D. Ginsbourger, C. Chevalier, J. Bect, and Y. Richet.
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A new method for the estimation of distribution
functions in parametric models

Steffen Betsch1∗

1Institute of Stochastics, Karlsruhe Institute of Technology

Abstract: A new method for the estimation of the cumulative distribution func-
tion (CDF) in a parametric model of continuous probability distributions is pro-
posed. The method is based on a simple representation of the CDF and provides
continuous estimation functions which, in the given simulations, outperform the
empirical CDF vastly. Moreover, the new approach is applicable to models where
the CDF cannot be given explicitly, and not even the normalization constant of the
density function needs to be known. The main goal of this contribution is to draw
attention to this flexible method of estimation, and to stimulate further research.

Keywords: CDF estimation, Cumulative distribution function

AMS subject classification: 62F99, 62E10

1 A new class of estimators

In applications, statisticians frequently encounter the problem of estimating the
CDF based on a given (real-valued) sample X1, . . . , Xn. The empirical distribution

function F̂n(·) = n−1
∑n
j=1 I{Xj ≤ ·}, being the most prominent estimator, is of

non-parametric nature and admits strong consistency properties for both discrete
and continuous probability distributions without any further assumptions. It is
however not a continuous function itself even if the data stem from a continuous
probability distribution, and further knowledge on the data, for instance that the
observations come from a parametric model, cannot be incorporated. Of course, in
parametric models where the CDF is given explicitly, the immediate alternative to
the empirical CDF is to estimate the parameters of the model from the data and
to plug the estimated values into the explicit formula. However, even for simpler
classical models, like the normal- or Gamma distribution, no explicit form of the
CDF exists and its calculation is possible by numerical integration only. In this
contribution we introduce a new, flexible class of CDF-estimators for parametric
classes of continuous probability distributions on the positive half axis of the real line
which admit a Lebesgue density. In particular, the method addresses the situation of

∗Corresponding author: steffen.betsch@kit.edu
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non-normalized models, that is, the estimators can be used even if the normalization
(integration) constant of the density functions is intractable. Such models frequently
occur in machine learning and signal processing, and we refer to [4] for a little more
detail about this particular situation and a method for the estimation of parameters
in those models.
The construction of the new estimators is essentially based on the necessity part of
the characterizations given in [2]. Since the argument is simple and rather short,
we give it below, focusing on the particular situation at hand. From the results
in [2] it is immediate that similar estimators can be constructed when the density
function is supported by the whole real line or by a bounded interval.
As for now, assume that {pϑ |ϑ ∈ Θ}, Θ ⊂ Rd, is a parametric model given through
density functions defined on the interval (0,∞), which are continuously differen-
tiable, and satisfy pϑ(x) > 0 for each x > 0. Further assume that for every ϑ ∈ Θ,∫ ∞

0

x
∣∣p′ϑ(x)

∣∣dx+

∫ ∞
t

∣∣p′ϑ(x)
∣∣dx <∞, t > 0. (1)

Let X,X1, . . . , Xn be independent and identically distributed (iid.) random vari-
ables with distribution given through p0 = pϑ0

, for some (unknown) ϑ0 ∈ Θ, and
denote by F0 the distribution function of X. By (1) we may use the fundamental
theorem of calculus and Fubini’s theorem to calculate

F0(t) =

∫ t

0

p0(s) ds = −
∫ t

0

∫ ∞
s

p′0(x) dxds

=

∫ t

0

E

[
−p
′
0(X)

p0(X)
I{X > s}

]
ds

= E

[
−p
′
0(X)

p0(X)
min{X, t}

]
, t > 0. (2)

This simple relation leads us to suggesting the estimation of F0 as follows: Take

some consistent estimator ϑ̂n of ϑ0 based on the sample X1, . . . , Xn and consider

T̂n(t) = − 1

n

n∑
j=1

p′
ϑ̂n

(Xj)

pϑ̂n(Xj)
min{Xj , t}, t > 0.

If the relation ϑ 7→ p′ϑ
pϑ

is sufficiently smooth, T̂n ought to be a good (pointwise!)

estimator of the right-hand side of (2) and thus of F0. Indeed, in many examples

it is obvious from the form of
p′ϑ(x)
pϑ(x) that T̂n(t) → F0(t) in probability or almost

surely (a.s.), depending on whether ϑ̂n is weakly or strongly consistent. Under a

suitable and rather weak Hölder-continuity assumption for the mapping ϑ 7→ p′ϑ(x)
pϑ(x)

on compact subsets of Θ it can also be shown in a more general setting that T̂n(t)→
F0(t) in probability. If (x, ϑ) 7→ p′ϑ(x)

pϑ(x) is measurable then the function t 7→ T̂n(t)

is easily seen to be a random element of the space of continuous functions on the
positive axis. Thus, the question arises whether (minimal) sufficient conditions can
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be identified so that T̂n converges to F0 in the space of continuous functions, i.e., if
the quantity ∥∥T̂n − F0

∥∥
∞ = sup

t> 0

∣∣T̂n(t)− F0(t)
∣∣

converges to zero in some stochastic mode of convergence. The study of this question
is not pursued here, but to motivate further research on the topic, we provide two
examples in one of which these results can be inferred explicitly, and we illustrate
how the new estimation method competes against the classical estimators with
respect to the uniform metric given above.

2 Example: The exponential distribution

Assume that X,X1, . . . , Xn are iid. exponentially distributed with rate parameter
ϑ0 > 0, i.e., X has density function p0(x) = ϑ0e

−ϑ0x, x > 0. Denote by Xn the

sample mean, and let ϑ̂n = (Xn)−1 be the maximum likelihood estimator, which
converges to ϑ0 a.s. As classical estimators for F0, we consider the empirical CDF

F̂n, and F̃n(x) = 1 − e−ϑ̂nx, the theoretical CDF with estimated parameter. Our
new estimator takes the form

T̂n(t) =
1

n

n∑
j=1

(Xn)−1 min{Xj , t}, t > 0.

It is readily seen that T̂n is itself a CDF (a.s.). Therefore, since T̂n(t)→ F0(t) a.s.
for each t > 0, the proof of the Glivenko-Cantelli theorem for the empirical CDF

also yields ‖T̂n−F0‖∞ → 0 a.s. Table 1 gives an idea on how the estimators perform

in the uniform metric. We calculate ‖F̂n−F0‖∞ by the well-known formula for the
Kolmogorov-Smirnov statistic, obtain

∥∥F̃n − F0

∥∥
∞ =

∣∣∣∣∣( ϑ̂nϑ0

) ϑ0
ϑ0−ϑ̂n −

( ϑ̂n
ϑ0

) ϑ̂n
ϑ0−ϑ̂n

∣∣∣∣∣
explicitly, and approximate∥∥T̂n − F0

∥∥
∞ ≈ supj= 1,...,300

∣∣T̂n(tj)− F0(tj)
∣∣,

where 0 < t1 < · · · < t300 ≤ X(n) = max{X1, . . . , Xn} are equidistant points (to

justify this approximation, note that T̂n(t) = 1 a.s. for all t ≥ X(n)). The first
quantity of course, does not depend on the underlying distribution. All simulations
were performed with Python 3.7.2 (as provided by the Python Software Foundation,
https://www.python.org, accessed 19 September 2019).
The results in Table 1 are not surprising, but confirm, at least in this simple example,
that the new estimation method is sound: The theoretical CDF with estimated
parameter fares best for it incorporates the most information about the underlying
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ϑ0 n ‖F̂n − F0‖∞ ‖F̃n − F0‖∞ ‖T̂n − F0‖∞
25 0.168 0.0591 0.0925

0.5 50 0.1194 0.0417 0.0651
100 0.0852 0.0296 0.0461

25 0.1674 0.0586 0.092
1 50 0.1203 0.0421 0.0655

100 0.085 0.0292 0.0455

25 0.167 0.0589 0.0922
2 50 0.1194 0.0414 0.0647

100 0.0851 0.0292 0.0455

Table 1: (Approximated) values calculated with 10,000 exponentially distributed
Monte Carlo samples for sample sizes n = 25, 50, 100.

parametric model. The new estimator follows behind and clearly outperforms the

empirical CDF. This is insofar promising, as that the second estimator F̃n is not
available for more complex distributions that do not have an explicit CDF (see the
next example).

3 Example: The Nakagami distribution

Let X,X1, . . . , Xn be iid. Nakagami-distributed with parameters m0, s0 > 0, i.e.,
X has Lebesgue density

p0(x) =
2mm0

0

Γ(m0) sm0
0

x2m0−1 exp
(
− m0

s0
x2
)
, x > 0,

where Γ denotes the Gamma function. By m̂n and ŝn we denote the max-
imum likelihood estimators which, in the simulation, are calculated with the
’stats.nakagami.fit’-method in the ’scipy’-module of Python (see [6]). Our estimator
for the CDF takes the form

T̂n(t) =
1

n

n∑
j=1

(
2m̂nXj

ŝn
− 2m̂n − 1

Xj

)
min{Xj , t}, t > 0,

and we compare it to the empirical CDF F̂n. Since the CDF of the Nakagami
distribution can only be given in terms of the regularized incomplete Gamma func-

tion, we do not use the naive estimator in this case. We have limt↘ 0 T̂n(t) = 0

and T̂n(t) = 1 a.s., t ≥ X(n) (note that ŝn = n−1
∑n
j=1X

2
j ), so we calculate the

quantities in Table 2 just like for the exponential distribution. It is however not so

clear if T̂n is itself increasing and hence a CDF. Still, the simulation results indicate
that a uniform consistency result should hold in this case.
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(m0, s0) n ‖F̂n − F0‖∞ ‖T̂n − F0‖∞
25 0.167 0.0995

(1, 1) 50 0.1205 0.0697
100 0.0857 0.0493

25 0.1676 0.0939
(0.25, 1.5) 50 0.119 0.0646

100 0.0851 0.0452

25 0.1679 0.1060
(2, 0.25) 50 0.1194 0.0738

100 0.085 0.052

25 0.1669 0.1067
(3, 0.75) 50 0.1194 0.0751

100 0.0852 0.053

Table 2: (Approximated) values calculated with 10,000 Nakagami-distributed
Monte Carlo samples for sample sizes n = 25, 50, 100.

Figure 1: Plots for a Nakagami-distributed sample of size 50 with underlying pa-
rameters m0 = 1, s0 = 1.

It is readily seen from Table 2 that our new estimator outperforms the empirical
CDF also for this slightly more complicated distribution. Note that preliminary
simulations have shown that the performance depends on the choice of estimators

for m0 and s0, as is to be expected. Figure 1 illustrates that, since T̂n is a continuous
function, it also constitutes the visually more convincing estimator as compared to
the empirical CDF.

4 Comments

The article at hand is to be read as a suggestion rather than a comprehensive
account of the new estimation method for the CDF, and we give some thoughts
on possible further research. First note that we did not discuss the integrability
condition (1), but in [2] it was argued that this condition is not restrictive. The
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authors of [2] also prove that under few additional conditions the explicit formula for
the CDF given in equation (2) completely characterizes the distribution of F0 within
a large class of probability distributions. They also give similar characterizations
for distributions supported by the whole real line or by bounded intervals, so CDF-
estimators of a comparable type can be constructed thereof. These characterizations
are also used to construct (consistent) goodness-of-fit tests, see e.g. [1]. We have
indicated that a uniform convergence result similar to that of the empirical CDF
should hold. Sufficient conditions for this conjecture and its precise proof remain
to be found. Additionally, such a consistency result could possibly be extended by

examining whether there exists a scaling factor C(n) such that C(n)‖T̂n − F0‖∞
converges to a non-degenerate limit distribution. A larger scale simulation study,
including different metrics and other approaches (like kernel methods or approaches
from [3] and [5]), would help to understand the behavior of the estimators better,
in particular with respect to the impact of the parameter estimators that have to
be plugged in.

Acknowledgements: The author thanks Bruno Ebner for his careful reading of
the manuscript and his helpful suggestions.
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Abstract: We propose a new class of scale free goodness-of-fit tests for the expo-
nential distribution based on the Puri-Rubin characterization. For the construction
of test statistics we employ weighted L∞ distance between V-empirical Laplace
transforms of the random variables that appear in the characterization. We de-
rive the asymptotic properties, and to assess the quality of the tests, we calculate
the approximate Bahadur efficiency for some common close alternatives. For small
sample sizes, a simulated power study is performed. The tests are shown to be very
efficient and powerful in comparison to many other exponentiality tests.

Keywords: asymptotic efficiency, Laplace transform, V-statistic with estimated
parameters

AMS subject classification: 62G10, 62G20

1 Introduction

Consider testing the null hypothesis that the data come from the exponential distri-
bution, i.e. H0 : X ∼ E(λ), where λ > 0 is an unknown scale parameter. The char-
acterization based approach to goodness-of-fit testing usually provides test statistics
that do not depend on the unknown parameter, and are, therefore, suitable for test-
ing such a composite hypothesis. Some characterization based exponentiality tests
can be found in e.g. [8], [9],[10].
Here we construct a supremum-type test based on the famous Puri-Rubin charac-
terization proposed in [13].

Characterization 1. Let X1 and X2 be two independent copies of a random variable
X with pdf f(x). Then X and |X1 −X2| have the same distribution, if and only if
for some λ > 0, f(x) = λe−λx, for x ≥ 0.

Common tools for assessing the quality of the test are its power, in case of small
and moderate sample sizes, and its asymptotic efficiency. Since the asymptotic
distribution of supremum-type statistics is not normal, we opt for the Bahadur
efficiency.

∗Corresponding author: marijar@matf.bg.ac.rs
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2 Test statistic

Let X1, X2, ..., Xn be independent and identically distributed (i.i.d.) non-negative
random variables with an unknown absolutely continuous distribution function F .
In view of the Characterization 1, we propose the following family of test statistics,
depending on the tuning parameter a > 0:

LPn,a = sup
t>0

∣∣∣( 1

n

n∑
i1=1

e−tYi1 − 1

n2

n∑
i1,i2=1

e−t|Yi1−Yi2 |
)
e−at

∣∣∣, (1)

where Yi = Xi
X̄

, i = 1, 2, . . . , n, is the scaled sample. The scaling of the sample is
done to make the statistic scale invariant under the null hypothesis, and the role of
the tuning parameter is to emphasize different type of differences between the null
and the alternative hypothesis.
For a fixed t, the expression in the absolute parenthesis of (1) can be represented
as

Vn(t; λ̂n) =
1

n2

∑
i1,i2

Φ(Xi1 , Xi2 , t; λ̂n)e−at, (2)

where Φ is a symmetric function of its arguments. Therefore Vn(t; λ̂n) is a V-statistic
with an estimated parameter. Thus the test statistic LPn,a can be represented as

sup
t≥0
|Vn(t; λ̂n)e−at|, where {Vn(t; λ̂n)} is a V-empirical process.

The asymptotic behaviour of LPn,a is given in the following theorem.

Theorem 2. Let X1, ..., Xn be i.i.d. with an exponential distribution. Then

√
nLPn,a

D→ sup
t>0
|η(t)|,

where η(t) is centered Gaussian process with the covariance function

K(s, t) =
e−a(s+t)st(4 + 4s+ 4t+ 3st)

12(1 + s)(2 + s)(1 + t)(2 + t)(1 + s+ t)
(3)

Proof. In [4] was shown that, for fixed t, the statistics
√
nVn(t; λ̂n) from (2) and√

nVn(t;λ) are asymptotically equally distributed, and that their distribution does

not depend on λ. Hence,
√
nVn(t; λ̂n)e−at converges in D(0,∞) to the centered

Gaussian process {η(t)} (see [14]) with the covariance function

K(s, t) = e−a(s+t)

∞∫
0

∞∫
0

Φ(x, y, t; 1)Φ(x, z, s; 1)e−x−y−zdxdydz

which after some calculation becomes (3). Therefore LPn,a converges to supt>0 |η(t)|.
This completes the proof.
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3 Approximate Bahadur efficiency

Let G = {G(x; θ), θ > 0} with corresponding densities {g(x; θ)} be a family of
alternative distribution functions with finite expectations, such that G(x, θ) = 1−
e−λx, for some λ > 0, if and only if θ = 0, and the regularity conditions for V-
statistics with weakly degenerate kernels from [12, Assumptions ND] are satisfied.
Within this class of alternatives, the null hypothesis can be restated as H0 : θ = 0.
For two sequences of test statistics, Tn and Vn, having the same null and alternative
hypothesis, the relative Bahadur efficiency is defined as the ratio of the sample sizes
needed to reach the same power when the size of the tests approaches zero. For
close alternatives, i.e. alternatives from G for which θ is close to zero, this ratio
can be expressed as the limit when θ → 0 of the ratio of the Bahadur approximate
slopes (see [1]):

e∗T,V = lim
θ→0

c∗T (θ)

c∗V (θ)
.

The Bahadur approximate slopes of Tn (and Vn) can be calculated as (see [11])

c∗T (θ) = aT b
2
T (θ), (4)

where aT is the coefficient next to x2 in the expansion of the logarithmic tail of
the limiting distribution, and bT (θ) is the limit in probability of Tn under the
alternative.
The approximate local Bahadur slope of LPn,a(λ̂n), for close alternatives, is derived
in the following theorem.

Theorem 3. For the statistic LPn,a(λ̂n) and a given alternative density g(x, θ) from
G, the local Bahadur approximate slope is given by

c∗L(θ) =
1

supt≥0K(t, t)
sup
t≥0

(
2

∫ ∞
0

ϕ̃1(x; t)g′θ(x; 0)dx
)2

· θ2 + o(θ2), θ → 0,

where ϕ̃1(x; t) = E(Φ(·)e−at|X1 = x) with Φ being defined in (2).

Proof. The tail behaviour of the random variable supt>0 |ηt| is equal to the inverse
of the supremum of the covariance function, i.e. the aL = 1

supt>0 K(t,t) (see [7]).

Since Xn converges almost surely to its expected value µ(θ), using the Law of
large numbers for V -statistics with estimated parameters (see [6]), it follows that

Vn(t; λ̂)e−at converges to

bL(t; θ) = Eθ(Φ(X1, X2, t;µ(θ))e−at).

Expanding bL(θ) in the Maclaurin series we obtain

bL(t; θ) = 2

∫ ∞
0

ϕ̃1(x, t)g′θ(x; 0)dx · θ + o(θ),

where ϕ̃1(x, t) = E(Φ(X1, X2, t; 1)e−at|X1 = x1). According to the Glivenko-
Cantelli theorem for V-statistics [5], the limit in probability under the alternative



18 M. Cuparić et al.

for statistics LPn,a is equal to supt≥0 |bL(t; θ)|. Inserting this into (4) completes the
proof.

We calculate approximate Bahadur efficiency with respect to the LRT (see [2]) for
some common alternatives, namely Weibull, Gamma, linear failure rate (LFR) and
mixture of exponential distributions with negative weights (EMNW(3)) distribu-
tion. Their densities can be found e.g. in [4]. The efficiencies, as functions of the
tuning parameter a, are shown on Figure 1.
In comparison to the results presented in [3] we may conclude that our new tests
are reasonably to highly efficient.

Figure 1: Local approximate relative Bahadur efficiency of L
(P)
n,a with respect to the

LRT

4 Power study

Here we present the simulated powers of new tests against alternatives whose den-
sities can be found e.g. in [3]. The empirical powers are obtained using the Monte
Carlo procedure based on 10000 replicates, for sample sizes n = 20 and level of
significance α = 0.05. For comparison purpose we use the same labels as in [4] and
[15]. The powers vary from moderate to very high.

Table 1: Percentage of rejected hypotheses for n = 20
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LP 5 47 64 25 67 17 17 17 34 46 47 55 1 39 82 1 27
LPn,0.5 5 50 63 29 77 24 23 22 40 53 58 47 6 34 80 2 34
LPn,1 5 50 62 31 79 23 22 22 41 55 55 40 12 32 81 3 42
LPn,2 5 49 62 31 80 22 25 25 41 57 58 40 27 33 78 4 47
LPn,5 5 51 62 31 80 24 23 23 42 57 60 34 39 29 76 7 53
LPn,10 5 47 60 32 80 22 23 23 41 57 60 33 47 28 75 8 57
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Abstract: Undirected graphical models are popular in a number of fields due
to their interpretablity and flexibility in describing complex multivariate distribu-
tions. Efficient estimation and selection of graphs, however, remain challenging
when the number of connections is large relative to the sample size, even under
the Gaussian distributional assumption. Within a composite likelihood framework,
a novel methodology which simultaneously estimates parameters and selects edges
is proposed. The procedure consists of minimizing the divergence of the pairwise
composite likelihood score from the full likelihood score, subject to a constraint
representing the graph sparsity. The empirical performance of such approach is
assessed through data simulated from a Gaussian random field.

Keywords: Composite likelihood estimation, model selection, `1-penalization.
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1 Introduction

Undirected graphical models have been extensively applied in a variety of fields,
such as medicine, physics and engineering, due to their flexibility and facility of
interpretation. These models describe complex multivariate distributions through
the product of simpler clique-specific sub-models (e.g. pairwise models describing
edges). One crucial question is how to select the structure of large graphs, i.e. how
to obtain the list of edges from a large set of feasible edges. Numerous works in the
literature propose to achieve such selection through solutions hinging on likelihoods
with `1-type penalties [4, 5]. To address situations where the maximization of
the likelihood function is impracticable, penalized approaches based on composite
likelihood (CL) estimation have been suggested [1, 2, 7]. Within the CL framework,
intractability of the full likelihood is avoided by taking a weighted combination of
low-dimensional likelihood objects [6].

∗Corresponding author: claudia.dicaterina@unibz.it



Selection of graphical models via pairwise likelihood truncation 21

In this paper, a new strategy to determine the non-zero edges in high-dimensional
graphs, called truncated pairwise likelihood (TPL), is introduced. In TPL, a data-
driven combination of pairwise likelihood objects built on node pairs is selected by
minimizing a distance between the maximum likelihood and the pairwise likelihood
score functions, subject to a `1-penalty discouraging the inclusion of too many terms
in the final estimating equation. The proposed criterion may be interpreted as to
maximizing the statistical accuracy of the selected model for a given level of sparsity
in the graph.

2 Pairwise likelihood truncation

Let X = (X1, . . . , Xd) be the random vector following a joint distribution indexed
by the parameter of interest θ ∈ Θ ⊆ Rq, q ≥ 1. Consider the undirected graph
G = (V, E) for the set V of nodes and the set E of edges related to single variables
and variable pairs in X, respectively. Supposing that the distribution of X satisfies
the Markov independence assumption, by the Hammersley-Clifford theorem, one
can write the density function of X as

f(x1, . . . , xd; θ) = exp

∑
s∈V

ηsφs(xs)+
∑

(s,t)∈E

ηst(θ)φst(xs, xt)−log a(θ)

 , (1)

where {φs(Xs), s ∈ V} and {φst(Xs, Xt), (s, t) ∈ E} are node- and edge-specific suf-
ficient statistics for canonical parameters {ηs} and {ηst(θ)}, respectively, and a(θ)
is the normalization constant. For simplicity, the single marginal components {ηs}
are treated as nuisance parameters independent of θ, while the pairwise components
{ηst(θ)} serve to describe the dependence between Xs and Xt through θ. Specifi-
cally, if ηst(θ) = 0 the sth and the tth nodes are disconnected. Our focus here is
on sparse graphs whose dimension p = |E| = d(d − 1)/2 is much larger than the
number p1 of non-zero edges.
Based on model (1), the marginal density for the pair (Xs, Xt) is

fst(xs, xt; θ) = exp{ηsφs(xs)+ ηtφt(xt)+ ηst(θ)φst(xs, xt)− log ast(θ)} , (2)

with ast(θ) being the pairwise normalization term. For n independent observations

X(1), . . . , X(n) on X, the maximum composite likelihood estimator θ̂(w) is found
by solving the q-dimensional estimating equation

0 =

n∑
i=1

u(θ;w,X(i)) =
∑

(s,t)∈E

wst

n∑
i=1

ust(θ;X
(i)) , (3)

with ust(θ;x) = ∂ log fst(xs, xt; θ)/∂θ pairwise score function where the nuisance
parameters are replaced by estimates {η̂s, η̂t} obtained by separate optimization of
node-specific likelihoods. The vector w of scalar coefficients {wst ∈ R, (s, t) ∈ E}
will be hereafter referred to as composition rule. Each wst represents the relative
impact of ust(θ;x) on the overall CL score (3), and two variables Xs and Xt are
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regarded as independent if wst = 0, meaning that the associated pairwise model (2)
does not contain information about θ.
A sparse composition rule wλ(θ) is derived by minimizing the penalized score di-
vergence

Qλ(θ, w) =
1

2
E
∥∥uML(θ;X)− u(θ;w,X)

∥∥2

2
+ λ

∑
(s,t)∈E

|wst| , (4)

where uML(θ, x) = ∂f(x; θ)/∂θ is the maximum likelihood score, ‖ · ‖2 denotes
the `2-norm, and λ ≥ 0 is a given constant. The first term in (4) is a statistical
accuracy objective, while the second is a complexity penalty discouraging overly
complicated graphs. The geometric properties of the `1-penalty guarantee that
several elements in wλ(θ), corresponding to specific edges in E , are exactly zero for
sufficiently large values of λ. This fact can be viewed as a truncation of the classical
pairwise likelihood estimating equation in (3).
One issue related to the direct minimization of Qλ(θ, w) is the presence of the
intractable score uML(θ;x) and of the theoretical expectation based on the un-
known true parameter. Let U(θ, x) be the q × p matrix with column vectors
{ust(θ, x), (s, t) ∈ E} and define the p × p matrix S(θ, x) = U(θ, x)>U(θ, x). Ex-
ploiting the second Bartlett identity as done in [3, p. 76], formula (4) becomes

Qλ(θ, w) = w>E {S(θ;X)}w − diag [E {S(θ;X)}]w + λ
∑

(s,t)∈E

|wst| + c(θ) ,

being the quantity c(θ) unrelated to w. The final composition rule ŵλ is defined as

the minimizer of the data-driven criterion Q̂λ(w), where expectations are replaced
by sample averages and evaluation at θ = θind with ηst(θind) = 0, ∀(s, t) ∈ E , allows
for the effective detection of pairwise dependencies. Then, solving equation (3) with

w = ŵλ leads to the TPL estimator θ̂λ = θ̂(ŵλ).

3 Example: Gaussian random field

Consider n independent observations on X ∼ Nd(0,Σ), where Σ is a d×d covariance
matrix with diagonal elements σ2

1 = · · · = σ2
d = 1 and unknown off-diagonal entries

{θst, (s, t) ∈ E}. The TPL objective Q̂λ(θ) can be constructed based on pairwise
scores

ust(θst;xs, xt) =
∂

∂θst

{
− x2

s + x2
t

2(1− θ2
st)

+
θst

1− θ2
st

xsxt −
1

2
log(1− θ2

st)

}
, (5)

since (Xs, Xt) follows a bivariate normal distribution N2(0,Σst) with unit variances
and correlation θst ∈ (−1, 1).
To investigate the TPL performance in terms of discrimination among edges, we
generate 250 Monte Carlo samples of size n ∈ {150, 250} from Nd(0,Σ) with d ∈
{25, 50} and Σ defined by setting θst = θ > 0 for 1 ≤ s < t ≤ 10 and θst = 0
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otherwise. This choice implies a sparse graph configuration with only p1 = 45 non-
zero edges out of p ∈ {300, 1225}. Monte Carlo estimates for the false discovery
proportion (FDP) and true positive proportion (TPP) of TPL are computed along
the solution path for ŵλ as

FDP(λ) =
V (λ)

max{|{(s, t) : ŵst(λ) 6= 0}|, 1}
and TPP(λ) =

T (λ)

max{p1, 1}
,

where V (λ) = |(s, t) : ŵst(λ) 6= 0 and θst = 0| and T (λ) = |(s, t) : ŵst(λ) 6=
0 and θst 6= 0| denote the number of false and true discoveries for fixed λ, respec-

tively. Minimization of Q̂λ(w) is implemented by the function sparsepca in the R
package elasticnet [8], over a grid of 50 values for λ. In this example, the value
θind at which the empirical criterion is calculated corresponds to θst = 0, ∀(s, t) ∈ E .
Table 1 reports estimates of FDP and TPP when d = 50 and the average num-
ber of selected pairs across Monte Carlo samples is close to the truth. Once the
graph dimension is correctly inferred by a suitable choice of λ not discussed here,
the ability of TPL to detect the pairwise scores corresponding to non-zero edges
increases with n and with the size of the correlation coefficient θ. Figure 1 shows
the estimated TPP when the first irrelevant score enters the composition rule (left)
and the estimated FDP the first time all meaningful scores are discovered (right)
under the least favorable setting with θ = 0.3 and n = 150. If d decreases from 50
to 25, the empirical distribution of the TPP shifts to the right, whilst that of the
FDP moves towards 0.

Table 1: True positive proportion (TPP) and false discovery proportion (FDP) of
TPL for the Gaussian random field model with d = 50. Estimates at each value of
λ are based on 250 Monte Carlo samples of size n.

θ = 0.3 θ = 0.6 θ = 0.9
n λ TPP FDP TPP FDP TPP FDP
150 2.118 0.545 0.015 0.986 0.000 1.000 0.000

1.672 0.633 0.026 0.987 0.001 1.000 0.000
1.225 0.734 0.060 0.990 0.003 1.000 0.000
0.779 0.844 0.149 0.993 0.020 1.000 0.001

250 2.118 0.933 0.017 0.995 0.000 1.000 0.000
1.672 0.957 0.039 0.996 0.002 1.000 0.000
1.225 0.978 0.092 0.998 0.009 1.000 0.000
0.779 0.990 0.230 0.999 0.048 1.000 0.001

4 Final remarks

A novel technique for simultaneous estimation and selection of undirected graphical
models within the CL framework has been illustrated. The empirical evidence
presented confirms the validity of the approach when dealing with sparse Gaussian
random fields. Type I error (FDP) and power (TPP) of the TPL strategy seem to
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Figure 1: Empirical distributions of the true positive proportion (TPP) when the
first false score enters the composition rule (left) and of the false discovery propor-
tion (FDP) the first time all true scores are discovered (right). Results are based
on 250 Monte Carlo samples.

behave particularly well when the correlation magnitude among nodes is large to
moderate, even in the presence of modest samples.
For future research, it would be valuable to develop theoretical conditions on the
size of λ ensuring model selection consistency of ŵλ in a setting where both n and

p diverge. The performance of the associated TPL estimator θ̂λ could be then com-
pared with that of an oracle estimator based on the true non-zero edges. Derivation
of empirical rules for the choice of λ and extensions to general M -estimating equa-
tions represent other avenues of further work.
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Abstract: Linear filtering problem for infinite-dimensional Gaussian processes
with finite - dimensional observation process is studied. Integral equations for the
filter and for covariance of the error are derived. General results are applied to
a stochastic evolution equation driven by cylindrical fractional Brownian motion
observed at finitely many points on an unbounded domain.
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Introduction

This paper deals with the linear filtering problem for infinite - dimensional Gaussian
processes with finite - dimensional observation. In general, by the filtering problem
we understand the case when there is a process (called signal) which is not observable
and we would like to find an optimal estimate of this process. Such an estimate
is based on observation of another process (called observation process) which is
typically some noisy perturbation of a functional of the signal.
The aim of this paper is to give an overview of [3]. These results are further extended
for a signal defined on a more general domain which enables to state more specific
integral equations for the filter. For a short survey of this field see the introductory
part of [3].
The paper is divided into two Sections. Section 1 contains an overview of the main
results of the work [3]. In the second Section, the general results are applied to
a stochastic heat equation driven by cylindrical fractional Brownian motion on an
unbounded domain which slightly extends Example 3.4 in [3].
The space of bounded linear operators mapping a Banach space X to a Banach
space Y is denoted as L(X,Y ), L(X) := L(X,X). The space of Hilbert-Schmidt
operators on a Hilbert space H is denoted by L2(H).
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1 Solution of the filtering problem

Consider separable Hilbert spaces H and V , where H = (H, 〈·,·〉H , ‖ · ‖H), V =
(V, 〈·,·〉V , ‖ · ‖V ), such that V ⊂ H, V is dense in H and identifying H with the
dual H∗ the embeddings

V ↪→ H = H∗ ↪→ V ∗

are continuous and dense. The duality pairing between V and V ∗ is defined by the
inner product on H, that is 〈u, v〉V,V ∗ = 〈u, v〉H for u ∈ V ⊂ H and v ∈ H ⊂ V ∗.
Such construction is called rigged Hilbert space or Gelfand triple and it enables
to work with pointwise observations of the signal driven by a stochastic partial
differential equation. The larger space H (which is usually a Lebesgue space on a
domain) is suitable for the definition of the noise term and the stochastic integral
of the signal, while the signal itself lives in the smaller space V which can be
contained in the space of continuous functions (for which values at given points are
well defined).
Consider the signal θ = {θt, t ∈ [0, T ]} that is a centered Gaussian mean - square
continuous measurable process in V defined on stochastic basis (Ω, F, P, (Ft)). Let
ξ = {ξt, t ∈ [0, T ]} denote an Rn - valued observation process given as

ξt =

∫ t

0

A(s)θs ds+Wt, (1)

where A is a bounded strongly measurable function from [0, T ] to L(V,Rn). Here
W = {Wt, t ∈ [0, T ]} is a standard Rn - valued (Ft) - Wiener process independent
of the signal θ.
Further, assume that for each t ∈ [0, T ] operator A(t) takes the form

A(t)b = (〈b, A1(t)〉V,V ∗ , . . . , 〈b, An(t)〉V,V ∗)T , b ∈ V,

where A1(t), . . . , An(t) ∈ V ∗. Note that the dual operator A∗(t): Rn → V ∗ takes
the form A∗(t)z =

∑n
i=1 ziAi(t) for all z ∈ Rn.

In the paper the optimal estimate θ̂t called filter, defined as

θ̂t = E[θt|F ξt ]

is studied. Here (F ξt )t∈[0,T ] is the filtration generated by the observation process
ξ. It is well known that the above defined conditional expectation is the optimal
estimate (in the mean-square sense) of the signal θ given the observation ξ.
For arbitrary x, y ∈ V we define tensor product x ◦ y ∈ L(V ∗, V ), (x ◦ y)v =
x〈y,v〉V,V ∗ , v ∈ V ∗. Let Kθ(t, s) = E[θt ◦ θs], t, s ∈ [0, T ] be the covariance operator
of the process θt, t ∈ [0, T ]} . Notice that the mean - square continuity of the
process implies that the mapping Kθ : [0, T ]2 → L(V ∗, V ) is strongly continuous
and bounded.
The following theorem provides the tool to obtain the filter.
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Theorem 1. Let Λ = {(t, s) ∈ [0, T ]2; 0 ≤ s ≤ t ≤ T}. The filter θ̂ satisfies the
stochastic integral equation

θ̂t =

∫ t

0

Φ(t, s)A∗(s) dξs −
∫ t

0

Φ(t, s)A∗(s)A(s)θ̂s ds, t ∈ [0, T ], (2)

where function Φ: Λ→ L(V ∗, V ) defined as Φ(t, s) = E[θt ◦ (θs − θ̂s)], (s, t) ∈ Λ, is
strongly continuous and is the unique solution to the integral equation

Φ(t, s) = Kθ(t, s)−
n∑
j=1

∫ s

0

(Φ(t, r)Aj(r)) ◦ (Φ(s, r)Aj(r)) dr. (3)

Moreover, for all t ∈ [0, T ], Φ(t, t) is the covariance of the estimation error at time
t ∈ [0, T ], that is,

Φ(t, t) = E
[
(θt − θ̂t) ◦ (θt − θ̂t)

]
(4)

holds.

Proof. See Theorem 1.1 in [3]. For uniqueness see Theorem 2.1 in [3].

Remark 1. Linear Stochastic Evolution Equation driven by Wiener Process
Suppose that the signal is given as an H-valued solution of a stochastic evolution
equation driven by H-valued cylindrical Wiener process and the observation ξ =
{ξt, t ∈ [0, T ]} is given by the equation (1) where V = H.
In this case, under some additional assumptions (cf. [3], Example 3.1), the equations
(2) and (3) simplify to the infinte - dimensional analogue of standard Kalman - Bucy
filter as shown in Theorem 3.2 in [3].

Remark 2. Note that, in general, if the signal θ = {θt, t ∈ [0, T ]} takes its values
in the Hilbert space H, the family (A(s))s∈[0,T ] of observation operators H → Rn

can be characterised by n functionals from the dual space of H and the concept of
rigged Hilbert space is not needed. In this case using adjoint operators A∗ and Φ∗

the equation (3) takes the form (cf. [3], Remark 2.1)

Φ(t, s) = Kθ(t, s)−
∫ s

0

Φ(t, r)A∗(r)A(r)Φ∗(s, r) dr. (5)

2 An example of stochastic heat equation

The results of previous section are now applied to the case when signal is governed
by the following parabolic equation

∂tu = ∆u+ η (6)

on [0, T ] × D with initial condition u(0, ·) = 0 and with the Dirichlet boundary
condition

u

∣∣∣∣
[0,T ] × ∂D

= 0,
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where ∆ is a Laplace operator. The domain D ⊂ Rd is open and has the Cm -
extension property (cf. [2]). It is well known that this property is satisfied, for
instance, if D = Rd, D = (Rd)+ or if D is bounded with Lipschitz boundary. The
noise η is fractional in time and correlated in space. This system can be reformulated
as the stochastic evolution equation

dθt = ∆θs ds+GdBt, θ0 = 0, (7)

where {Bt, t ∈ [0, T ]} is a cylindrical fractional Brownian motion with Hurst param-
eter h ∈ (0, 1) on D. The equation is considered in the Hilbert space H = L2(D).
Due to the boundary condition the Laplacian generates an analytic semigroup
(S(t), t ≥ 0) on H. The noise covariance G is supposed to be Hilbert-Schmidt on
H. In virtue of [1] the equation (7) has a unique mild solution θ = {θt, t ∈ [0, T ]}
which is continuous in time in the space Hδ = Dom

(
(β −∆)δ

)
for a fixed β large

enough and 0 ≤ δ < h. If, moreover,

h >
d

4

then taking δ ∈ (1/4, h) we have that the space V := Hδ is continuously embedded
into the space of continuous functions C(D) (cf. [2], Theorem 1.6.1), i.e.

V = Hδ ↪→ C(D) ↪→ L2(D) = H.

Hence it make sense to consider observation operator defined as

Aθt = (θt(z1), . . . , θt(zn)), (8)

where z1, . . . , zn ∈ D, which corresponds to pointwise observation of the signal
process θ at these points. To find the filter we can use the rigged Hilbert space
setting of the Theorem 1 which now reads (cf. [3], Corollary 3.5 and the note
following the proof of the Corollary 3.5):

Theorem 2. Consider the observation process ξ = {ξt, t ∈ [0, T ]} given by (1)

with operator A(t) = A defined by (8). Then the filter θ̂ satisfies stochastic integral
equation

θ̂t =

n∑
j=1

∫ t

0

Φzj (t, s) dξjs −
n∑
j=1

∫ t

0

Φzj (t, s)θ̂s(zj) ds, t ∈ [0, T ], (9)

where Φzi : Λ → C(D) is defined as Φzi(t, s) = E[(θs − θ̂s)(zi)θt] for all (t, s) ∈ Λ,
i = 1, . . . , n and integral equation

Φzi(t, s) = E [θs(zi)θt]−
n∑
j=1

∫ s

0

Φzj (s, r)(zi)Φzj (t, r) dr, i = 1, . . . , n (10)

is satisfied.
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Further, we can specify the covariances E [θs(zi)θt] that appear in the equation (10).
Suppose, for simplicity, that h > 1/2 and n = 1 (i.e. the process θ = {θt, t ∈ [0, T ]}
is observed at a single point z1 ∈ D). Since the noise term G is Hilbert-Schmidt it
may be expressed as

[G(f)](ξ) =

∫
D
k(ξ, η)f(η) dη, f ∈ H = L2(D),

where k ∈ L2(D × D). It is also well known that the semigroup (S(t), t ∈ R) may
be represented by a Green function g : [0, T ]×D ×D → R, that is,

[S(t)(f)](ξ) =

∫
D
g(t, ξ, η)f(η) dη, f ∈ H, t > 0.

For example if D = (0,∞) (i.e. ∆ is the Dirichlet Laplacian in L2(0,∞)), we have

g(t, ξ, η) =
1√
4πt

(
e−

(ξ−η)2

4t − e−
(ξ+η)2

4t

)
, ξ, η ≥ 0,

and if D = R, g is the Gaussian kernel

g(t, ξ, η) =
1√
4πt

e−
(ξ−η)2

4t , ξ, η ≥ 0.

The composition S(t)G may be written as

[S(t)G(f)](ξ) =

∫
D
g̃(t, ξ, η)f(η) dη, f ∈ H, t > 0,

where the composition kernel g̃ is given by

g̃(t, ξ, η) =

∫
D
g(t, ξ, λ)k(λ, η) dλ.

Now it is standard to compute the covariance

E [θs(z1)θt] (η) =

∫ s

0

∫ t

0

φh(λ, r)

∫
D
g̃(s− r, z1, ξ)g̃(t− λ, η, ξ) dξ dλdr,

for (s, t) ∈ Λ, η ∈ D, where φh(λ, r) = h(2h− 1) | λ− r |2h−2 and (η, λ) ∈ Λ.
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1 Introduction

We consider two-stage selection method of random predictors X ∈ Rp when the
underlying binary regression model:

P(Y = 1|X = x) = q(x) (1)

is misspecified. We discuss a problem of finding consistent estimator β̂ of β∗, where
β∗ minimizes risk function:

R(b) = Eρ(bTX, Y )

for b ∈ Rp and ρ : R × {0, 1} → R is a given convex function. We call model (1)
misspecified, when q(x) = q(βTx) and corresponding minus log-likelihood is not

equal ρ. In this case an aim of selection is to find β̂ the support of which recovers
the support of β∗ with high probability.
Recent advancements in data gathering allow for much larger number of observa-
tions n to be collected and to much larger number of variables p to be measured.
We very often encounter a situation, where p� n and consistent estimators of β∗

∗Corresponding author: m.kubkowski@mini.pw.edu.pl
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do not exist, unless we impose additional model constraints. Assumptions typically
concern structure of covariance matrix and sparsity constraints for β∗.
The proposed procedure of selection consists of screening and ordering predictors
by Lasso and then selecting a subset of predictors which minimizes Generalized
Information Criterion on the nested family pertaining to them.
In the contribution we discuss sufficient conditions (proved in [3] on the parame-
ters of the method and distribution of (X, Y ) under which the above procedure is
consistent.

2 Properties of Lasso estimator in misspecified bi-
nary model

We consider an i.i.d. random sample (X1, Y1), . . . , (Xn, Yn)
d
= (X, Y ) ∈ Rpn ×

{0, 1} where p = pn. We assume that coordinates Xij of Xi for i = 1, . . . , n and
j = 1, . . . , pn are subgaussian Subg(σ2

jn) with σjn > 0. For future reference let

sn = maxj σjn and assume that lim supn s
2
n < ∞. Empirical risk is defined as

(where b ∈ Rpn):

Rn(b) =
1

n

n∑
i=1

ρ(bTXi, Yi). (2)

We are interested in properties of Lasso estimator of β∗ defined as:

β̂L = arg min
b∈Rpn

Rn(b) + λ||b||1, (3)

where λ > 0. We assume that ρ(·, y) is convex function which is bounded from

below by m ∈ R. These two properties assure that β̂L exists (see [3]). Properties

of uniqueness and sparsity of β̂L are discussed in [6] and [5]. Assumptions on

distribution of (X, Y ) are not needed to ensure uniqueness of β̂L in any of the
proofs in this section. We only assume that β∗ exists and is unique in order to
obtain Lasso consistency. We are interested not only in estimation of β∗, but also
in estimation of the set of active predictors:

s∗ = suppβ∗ = {j ∈ {1, . . . , pn} : β∗j 6= 0}. (4)

We introduce the following notation:

B1(r) = {∆ ∈ Rpn : ||∆||1 ≤ r}, (5)

W (b) = R(b)−R(β∗), (6)

Wn(b) = Rn(b)−Rn(β∗), (7)

S(r) = sup
b:b−β∗∈B1(r)

|W (b)−Wn(b)|, (8)

β∗min = min
i∈s∗
|β∗i |. (9)
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The main Theorem in this section is Theorem 1 below. Idea of the proof is based

on fact that if S(r) defined in (8) is sufficiently small, then β̂L lies in a ball {∆ ∈
Rpn : ||∆ − β∗||1 ≤ r} (see Lemma 1). In Lemma 2 we prove a tail inequality for
S(r), from which Theorem 1 follows.

Before we proceed to the statement of Lemma 1, we define cone C̃ε and restricted
minimal eigenvalue κH(ε) on that cone:

C̃ε = {∆ ∈ Rpn : ||∆s∗c ||1 ≤ (3 + ε)||∆s∗ ||1}, (10)

κH(ε) = inf
∆∈C̃ε

∆TH∆

∆T∆
, (11)

where ε > 0 and H ∈ Rpn×pn is nonnegative definite matrix. The following margin
condition is also required:

(MC) There exist ϑ, ε, δ > 0 and non-negative definite matrix H ∈ Rpn×pn such that

for all b ∈ Rpn with b− β∗ ∈ C̃ε ∩B1(δ) we have:

R(b)−R(β∗) ≥ ϑ

2
(b− β∗)TH(b− β∗).

In (MC) we expect that β̂L−β∗ ∈ C̃ε∩B1(δ) with high probability for some ε, δ > 0
and (MC) is satisfied when ρ is linear or logistic loss (see [3]), H = D2R(β∗) is
hessian matrix of risk function and Xij are subgaussian (in the case of linear loss)
or bounded variables (in the case of logistic loss).

Lemma 1. Let ρ(·, y) be convex function for all y. Assume that λ > 0. Moreover,
assume margin condition (MC) with ϑ, ε, δ > 0 and pn × pn matrix H ≥ 0. If for

some r ∈ (0, δ] we have S(r) ≤ C̄λr and 2|s∗|λ ≤ κH(ε)ϑC̃r, where C̄ = ε/(8 + 2ε)

and C̃ = 2/(4 + ε), then ||β̂L − β∗||1 ≤ r.

Lemma 2. Let ρ(·, y) be convex function for all y and satisfy Lipschitz condition
for some L > 0 and for all b1, b2, y: |ρ(b1, y) − ρ(b2, y)| ≤ L|b1 − b2|. Assume that
Xij ∼ Subg(σ2

jn) for all i, j. Then for r, t > 0:

P(S(r) > t) ≤
14Lrsn

√
log(pn ∨ 2)

t
√
n

.

In the Theorem below we consider inequality (12), from which it follows that λ and
|s∗| cannot be too large constants and κH(ε) and β∗min. Therefore this inequality
imposes sparsity, covariance structure and appropriate signal strength in this model.
Remark 3 gives asymptotic conditions when the assumptions of this theorem are
satisfied.

Theorem 1. Let ρ(·, y) be convex function for all y and satisfy Lipschitz condition
with L > 0. Assume that Xij ∼ Subg(σ2

jn) for all i, j, margin condition (MC) is

satisfied for ε, δ, ϑ > 0, non-negative definite matrix H ∈ Rpn×pn and let

2|s∗|λ
ϑκH(ε)

≤ C̃ min

{
β∗min

2
, δ

}
, (12)
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where C̃ = 2/(4 + ε). Then:

P

(
||β̂L − β∗||1 ≤

β∗min
2

)
≥ 1−

14(8 + 2ε)Lsn
√

log(pn ∨ 2)

ελ
√
n

.

Proposition 1. (Separation property) If assumptions of Theorem 1 are satis-
fied, log pn = o(λ2n) and κH(ε) > d for some d, ε > 0 for large n, |s∗|λ =
o(min{β∗min, 1}), then

P

(
||β̂L − β∗||1 ≤

β∗min
2

)
→ 1.

Moreover

P

(
max
i∈s∗c

|β̂L,i| ≤ min
i∈s∗
|β̂L,i|

)
→ 1.

3 GIC minimization

Consider an arbitrary family M ⊆ 2{1,...,pn} of models (which may be data-
dependent) such that s∗ ∈ M,∀w ∈ M : |w| ≤ kn a.e. and kn ∈ N+ is some
sequence. We define Generalized Information Criterion (GIC) as:

GIC(w) = n min
b∈Rpn : bwc=0|wc|

Rn(b) + an|w|, (13)

where an > 0 is some penalty. Moreover, we consider condition similar to (MC) for
w ⊆ {1, . . . , pn} and some ε, θ > 0:

Cε(w): R(b) − R(β∗) ≥ θ||b − β∗||22 for all b ∈ Rpn such that supp b ⊆ w and
||b− β∗||2 ≤ ε.

Proposition below yields consistency of GIC on supersets of s∗.

Proposition 2. Assume that ρ(·, y) is convex, Lipschitz function with constant
L > 0, Xij ∼ Subg(σ2

jn), condition Cε(w) holds for some ε, θ > 0 and for every
w ⊆ {1, . . . , pn} such that |w| ≤ kn, kn ln(pn ∨ 2) = o(n) and kn ln(pn ∨ 2) = o(an).
Then we have

P( min
w∈M:s∗⊂w

GIC(w) ≤ GIC(s∗))→ 0.

The most restrictive condition of Proposition 2 is kn ln(pn ∨ 2) = o(an). We note
that in the case when pn ≥ n and kn = d, EBIC penalty equal log n + 2γ log pn
corresponds to the borderline of this condition.
Proposition below yields consistency of GIC on subsets of s∗.

Proposition 3. Assume that loss ρ(·, y) is convex, Lipschitz function with constant
L > 0, Xij ∼ Subg(σ2

jn), condition Cε(s
∗) holds for some ε, θ > 0 and an|s∗| =

o(nmin{1, β∗min}2), then

P( min
w∈M:w⊂s∗

GIC(w) ≤ GIC(s∗))→ 0.
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4 Selection consistency of SS procedure

SS (Screening and Selection) procedure, being a modification of SS procedure in [4],
is the following:

1. Find β̂L for some λ > 0, then sort all nonzero coefficients of β̂L: |β̂L,j1 | ≥
. . . ≥ |β̂L,jk | > 0.

2. Define MSS = {∅, {j1}, {j1, j2}, . . . , {j1, j2, . . . , jk}}.

3. Find ŝ = arg min
w∈MSS

GIC(w).

Proposition 4 and Remark 3 describe the situations when SS procedure works.

Proposition 4. Assume that ρ(·, y) is convex, Lipschitz function with constant
L > 0, Xij ∼ Subg(σ2

jn) and β∗ exists and is unique. If kn ∈ N+ is some se-
quence, margin condition (MC) is satisfied for some ϑ, δ, ε > 0, condition Cε(w)
holds for some ε, θ > 0 and for every w ⊆ {1, . . . , pn} such that |w| ≤ kn, MSS

is hierarchical family constructed in the step 2 of SS procedure. If P(∀w ∈ MSS :
|w| ≤ kn) → 1, |s∗| ≤ kn, lim inf

n
κH(ε) > 0 for some ε > 0 and H ≥ 0 ∈ Rpn×pn ,

log(pn) = o(nλ2), knλ = o(min{β∗min, 1}), kn log pn = o(n), kn log pn = o(an),
ankn = o(nmin{β∗min, 1}2), then we have:

P(ŝ = s∗)→ 1.

Remark 3. If pn = O(ecn
γ

) for some c > 0, γ ∈ (0, 1/2), ξ ∈ (0, 0.5 − γ), u ∈
(0, 0.5− γ − ξ), kn = O(nξ), λ = Cn

√
log(pn)/n, Cn = O(nu), Cn → +∞, n−

γ
2 =

O(β∗min), an = dn
1
2−u, then assumptions about asymptotic behaviour of parameters

in Proposition 4 are satisfied.
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Abstract: A survey of random-environment INAR models is presented. There is
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Also, the description of problems that arise in estimation and application are given,
as well as the approaches that overcome these problems.
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1 Introduction

The integer-valued autoregressive (INAR) models can be used when we want to
describe behavior of some random events which we count. These models are firstly
introduced in [5] and [1], and are based on the thinning operators. There are a lot
of models, which differ in the thinning operators or in the marginal distribution,
which are all stationary.
All mentioned models have one important property - they are stationary. However,
there are a lot of data with non-stationary character, for which they would be
therefore inappropriate. One of the non-stationary models which have dealt with
this are considered in [2].
From here comes the motivation for the consideration of some kind of randomness
in the environment of the process, which will lead to some non-stationary charac-
teristics. The first random environment INAR model, of order one, is introduced
in [6]. Then, process of higher order is given in [7], and conditional least square
estimators for it are given in [4]. Finally, generalized random environment INAR
models of higher order are introduced in [3].
Here will be given some discussion about this class of models. Firstly, there is the
description of the random environment as well as the formal definition. Then there
are introduced random environment INAR models. Finally, there is the description
of the estimation of the unknown parameters and also application of the models
considered.

∗Corresponding author: petra.laketa@pmf.edu.rs
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2 Random environment

As it was mentioned in the introduction, the main idea of random environment
integer-valued autoregressive models is that the environment is not permanent, but
has random variations. Also, what is more important, these variations affect the
main process. Precisely, they change its marginal distribution, by changing its
parameters. Therefore, we have situation that conditions in which the values of
the process are observed variate and cause the change of the marginal distribution,
which results in non-stationarity of the process. This is very important property,
because it was very frequent to describe the data with the non-stationary character
by the stationary INAR models. Of course, it was not enough convenient. This class
of models is attempt to overcome problem with application of the INAR models to
this type of data.
In order to describe this phenomena, in [7] is defined a process that will describe
conditions of the environment by the following definition

Definition 1. A sequence of random variables {Zn}, n ∈ N0, is called the r states
random environment process, for r ∈ N, if it is a Markov chain, which is taking val-
ues in Er= {1, 2, . . . , r}. More generally, {Zn}, n ∈ N0, is the random environment
process if it is the r states random environment process, for some r ∈ N.

Since the stress is not on the random environment process, we are not interested in
the real description of the environment and its the values, but only in its change
that affects the change of the marginal distribution of the considered process. This
is why Er contains the first r positive integers.

3 The first-order random environment INAR
model

It is now possible to construct the first-order random environment INAR model,
which is done in [7] in the following way

Definition 2. A non-negative integer-valued sequence of random variables
{Xn(Zn)}, n ∈ N0, is said to be the r states random environment integer-valued
autoregressive process of order 1 (RrINAR(1)) if it is given by

Xn(Zn) =

Xn−1(Zn−1)∑
i=1

Ui + εn(Zn−1, Zn), n ∈ N,

where

Xn(Zn) =

r∑
z=1

Xn(z)I{Zn=z},

εn(Zn−1, Zn) =

r∑
z1=1

r∑
z2=1

εn(z1, z2)I{Zn−1=z1,Zn=z2},
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{Ui}, i ∈ N, is a counting sequence of independent and identically distributed
(i.i.d.) random variables generating a thinning operator, {Zn} is an r states random
environment process introduced by Definition 1 and {εn(i, j)}, n ∈ N0, i, j ∈ Er,
are sequences of i.i.d. random variables, which meet the following conditions:

(A1) {Zn}, {εn(1, 1)}, {εn(1, 2)}, . . . , {εn(r, r)}, are mutually independent for all
n ∈ N0,

(A2) Zm and εm(i, j) are independent of Xn(l) for n < m and any i, j, l ∈ Er.

For any n ∈ N, random variables Xn(Zn) and εn(Zn−1, Zn) can be interpreted as
mixtures

Xn(Zn)
d
=


Xn(1), w.p. P (Zn = 1),
Xn(2), w.p. P (Zn = 2),

...
...

Xn(r), w.p. P (Zn = r),

and

εn(Zn−1, Zn)
d
=


εn(1, 1), w.p. P (Zn−1 = 1, Zn = 1),
εn(1, 2), w.p. P (Zn−1 = 1, Zn = 2),

...
...

εn(r, r), w.p. P (Zn−1 = r, Zn = r).

In practice, it is simpler to assume that realization {zn} of the random environ-
ment process is known in advance. This assumption makes it easier to obtain the
distribution of the residuals. Actually, this does not exclude the randomness of the
environment. In fact, when we apply the model, we can firstly determine sequence
{zn}, and then consider model with realized values of random environment. If we
want to predict values of the process X(Zn), we can predict Zn based on zn−1 and
then again use model with realized values {zn}
Having that on mind, in [7] the sequence {Xn(zn)} is considered based on the re-
alized random environment process, with additional assumptions about marginal
distribution and the thinning operator. Such process is named the r states random
environment INAR(1) process with the determined geometric marginal distribu-
tion, based on the negative binomial thinning operator (RrNGINAR(1)).

As an illustration, in Figure 1 is presented the simulated sequence of the random
states of length 50 with initial probabilities vector (0.5, 0.5) and transition matrix[

0.9 0.1
0.1 0.9

]
. The plot of the simulated R2NGINAR series based on that se-

quence of states with parameters µ = (1, 5) and α = 0.15 is given in Figure 2. We
can see from the plot that parts corresponding to the second state show greater
values, which is consequence of the fact that the second state corresponds to the
greater expectation µ2 = 5 than the first µ1 = 1.
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Figure 1: Plot of the random states

Figure 2: Plot of the simulated series
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4 Generalized random environment integer-valued
autoregressive model of higher order

The influence of the environment can be more significant. In the previous section it
was assumed that only marginal distribution is determined by external conditions.
This can be expanded also to the thinning parameter and to the order of the pro-
cess. For that purpose, the following sets are introduced: M = {µ1, µ2, ..., µr}
with possible values of the parameters of the marginal geometric distribution,
A = {α1, α2, ..., αr} that contains different values of thinning parameters and
P = {p1, p2, ..., pr} consisting of values of the maximal orders of the process in
the appropriate state. Therefore, for every state i ∈ Er we have parameters µi, αi
and pi that are valid for the model when that state of circumstances takes place.
This is done in [3]. The model has the following form

Xn(zn) =


αzn ∗Xn−1(zn−1) + εn(zn−1, zn), w.p. φ

(zn)
1,Pn

,

αzn ∗Xn−2(zn−2) + εn(zn−2, zn), w.p. φ
(zn)
2,Pn

,
...

...

αzn ∗Xn−Pn(zn−Pn) + εn(zn−Pn , zn), w.p. φ
(zn)
Pn,Pn

,

(1)

Here, if we use Pn = pzn , it would be too complex to obtain the distribution of the
residuals. Therefore, two different approaches are used. For the first model, named
INAR process with r-states, distribution parameters setM, thinning parameters set
A and maximal order set P (RrINARmax(M,A,P)), it holds Pn = min{pzn , p∗n},
where

p∗n = max {i ∈ {1, 2, ..., n} : zn−1 = zn−2 = ... = zn−i}.

So, when the change of the state occurs, the process order becomes one, and then it
becomes greater until it reaches the maximal order value for that state and remain
maximal until the new state change. The alternative is that it does not grow
gradually, but remains 1 until it can reach the maximal order, so in that case only
possible orders for the state i are 1 and pi. Precisely,

Pn =

{
pzn , p

∗
n ≥ pzn

1, p∗n < pzn

This model is named the random environment INAR process with r-states,
distribution parameters set M, thinning parameters set A and order set P
(RrGINAR1(M,A,P)).
What all random environment INAR models have in common is that they rely on
the another sequence which represents states of the circumstances. This sequence
determines marginal distribution at every moment and also the way that different
elements of the process depend on each other. Therefore, these models have some
similarities in the structure and also the approaches for estimation and application.
Since they are non-stationary, it cannot be proved that Yule-Walker estimators
are strongly consistent in a way it was done for other stationary INAR models.
For that reason, the sample is divided into the pieces on which the process could
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be considered as stationary. Namely, from the moment when state i occurs to
the moment when it changes to other state j, we have stationary process with
fixed parameters µi, αi and pi, so estimators defined on that part of the sample
would be strongly consistent and, consequently, their mean would be also strongly
consistent as the linear combination of the strongly consistent estimators. This is the
basic approach that is used in obtaining the Yule-Walker estimators for the random
environment INAR models. Correctness of such defined estimators is confirmed on
the values simulated from the appropriate models. They showed convergence to the
true parameter values. In simulations, first step is construction of the sequence {zn}
based on the given transition matrix. Then, the process Xn(zn) can be generated
using the formula for the wanted random environment INAR model.
When it comes to application, the problem that arise is determination of the se-
quence {zn}. The way it is solved is something new in the estimation for INAR
models. Namely, the data is clustered into r different clusters for the given number
r and then each cluster is assigned to the one state. After this procedure, we can
take zn = i if xn belongs to the i-th cluster. This makes sense because we already
explained that values of zn, which are from Er are important only in service of
distinction between different states. The number r should be chosen in dependence
of the sample size. For the small samples, if we choose large value for r, then there
will be a lot of small parts of the samples which can be treated as stationary, so
estimates will be poor. But, enlarging r makes model more flexible, so it can bet-
ter fit the data. Therefore, we should find optimum solution in combining these
two principles. Relative to other competitive models, random environment INAR
models showed best performance on the selected real-life data and therefore, they
justify their introduction.

Bibliography

[1] M. A. Al-Osh and A. A. Alzaid. First-order integer-valued autoregressive
(INAR(1)) process. J. Time Ser. Anal., 8:261–275, 1987.

[2] N. M. Khan, R. Sunecher, and V. Jowaheer. Modelling a non-stationary BI-
NAR(1) Poisson process. J. Stat. Comput. Simul., 86(15):3106–3126, 2016.
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1 Partial sums distributions

Let {P (1)
x }∞x=0 and {P ∗x}∞x=0 be two probability mass functions of univariate discrete

distributions defined on nonnegative integers. Partial-sums discrete probability dis-
tributions are defined in general in [3] by

P (1)(X = x) = P (1)
x = c1

∞∑
j=x

g(j)P ∗j , x = 0, 1, 2, ...,

where c1 is a normalizing constant, {P ∗x}∞x=0 is a parent and {P (1)
x }∞x=0 is a de-

scendant of the first generation. If we take {P (1)
x }∞x=0 as the parent of the new

generation while function g(j) remains unaltered, we obtain a descendant of the
second generation

P (2)
x = c2

∞∑
j=x

g(j)P
(1)
j , x = 0, 1, 2, ...,

where c2 is a normalizing constant. Let the parent be the descendant of the (k−1)-st
generation. Then the descendant of the k-th generation is

P (k)
x = ck

∞∑
j=x

g(j)P
(k−1)
j , x = 0, 1, 2, ...,

∗Corresponding author: livia.lessova@fmph.uniba.sk



42 L. Leššová

where ck is a normalizing constant.
The existence of a limit distribution

P (∞)
x = lim

k→∞
P (k)
x (1)

of such repeated partial summations for some given parent {P ∗x}∞x=0 and a given
function g(j) = a (which is called a geometric summation) was studied in [4].
In [1] it was proved that if a discrete distribution has a finite support, the limit
distribution (1) can be found (with some restrictions on function g(j)) using the
power method (a numerical method often used to find the dominant eigenvalue
and its corresponding eigenvector of a matrix). This result was extended in [2] for
bivariate partial summations.

2 Oscillating sequences of distributions

In the past only the existence of the limit (1) was proved under some conditions (see
[1, 2, 4]). An example where the limit does not exist has not been provided so far.
In the following, some examples of oscillating sequences of descendant distributions
which arise as results of repeated partial summations will be presented.

Oscillating distributions with support size two

Let the parent distribution with the support size two be given by P ∗0 = 1
10 , P ∗1 =

1− P ∗0 = 9
10 . If g(0) = −1 and g(1) = 1, the first descendant is

P
(1)
0 = c1g(0)P ∗0 + c1g(1)P ∗1 = −c1

1

10
+ c1

9

10
= c1

8

10
,

P
(1)
1 = c1g(1)P ∗1 = c1

9

10
,

then after determining the normalizing constant c1 we obtain

P
(1)
0 =

8

17
, P

(1)
1 =

9

17
.

The descendant of the second generation is

P
(2)
0 = c2g(0)P

(1)
0 + c2g(1)P

(1)
1 =

1

10
,

P
(2)
1 = c2g(1)P

(1)
1 =

9

10
,

which is identical with the parental distribution. This sequence of descendant dis-
tributions determined by the partial summation with g(0) = −1, g(1) = 1 with
the starting distribution P ∗0 = 1

10 , P ∗1 = 9
10 oscillates with the period k = 2. This

example can be generalized for the probability distributions with the support size
two.
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The aim is to identify every period and parent distribution for which the sequence
of partial sums oscillates. For the oscillation with a period k we will take g(0) = a
and g(1) = b (the normalizing constant is ”hidden” in the function g(j)), which
fully determines function g(j) (the support size is two). The k-th descendant is

P
(k)
0 = akP ∗0 + (ak−1b+ ak−2b2 + ...+ abk−1 + bk)P ∗1 ,

P
(k)
1 = bkP ∗1 .

It is obvious that g(1) = b = 1 (or g(1) can be −1, but this case is analogical).
Consequently,

P
(k)
0 = akP ∗0 +

(
k−1∑
i=0

ai

)
P ∗1 ,

P
(k)
1 = P ∗1 ,

for k ≥ 1. When we put P
(k)
0 = P ∗0 and if a 6= −1, then

P
(k)
0 = P ∗0 =

ak−1 + ak−2 + ...+ a+ 1

−ak + ak−1 + ak−2 + ...+ a+ 2
=

=
ak−1 + ak−2 + ...+ a+ 1

(2− a)(ak−1 + ak−2 + ...+ a+ 1)
=

1

2− a
.

For a ≤ 1 and a 6= −1 we obtain distribution P ∗0 = 1
2−a , P ∗1 = 1−a

2−a which is

invariant with respect to partial summation given by g(0) = a, g(1) = 1 (it remains
unchanged after applying this partial summation):

P
(1)
0 = a

1

2− a
+

1− a
2− a

=
1

2− a
,

P
(1)
1 =

1− a
2− a

.

For a = −1 we obtain

P
(k)
0 = (−1)kP ∗0 +

[
(−1)k−1 + (−1)k−2 + ...+ (−1) + 1

]
P ∗1 = P ∗0 ,

P
(k)
1 = P ∗1 ,

(2)

from which we can easily obtain the invariant distribution if we set k = 1. This
invariant distribution is

P ∗0 =
1

3
, P ∗1 =

2

3
.

For the even period k = 2l, l = 1, 2, ... it follows from (2) that

P
(k)
0 = P ∗0 + [(−1) + 1 + ...+ (−1) + 1]P ∗1 = P ∗0 ,

P
(k)
1 = P ∗1 ,
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and we can see that the lowest period is k = 2. Indeed, another even period for
which two is not a period does not exist. There is also another requirement - the
descendant of the first generation must be a probability distribution, which means
that in our case with a = −1 and k = 2 the parent distribution must satisfy
P ∗0 ≤ P ∗1 , in other words P ∗0 ≤ 1

2 . The only odd period is one, i.e. the constant
sequence of the same distributions (see the abovementioned invariant distribution).

Oscillating distributions with support size three

Results from the previous section can be extended to discrete distributions with
support size three. For distributions with the support size three we need three
values of the function g(j) in 0, 1 and 2. With the values g(1) and g(2) we have the
similar situation as in the case with the support size two, because the value g(0)
does not influence the transformation of P ∗1 , P ∗2 :

P
(1)
0 = c1 [g(0)P ∗0 + g(1)P ∗1 + g(2)P ∗2 ] ,

P
(1)
1 = c1 [g(1)P ∗1 + g(2)P ∗2 ] ,

P
(1)
2 = c1g(2)P ∗2 .

From the previous section we know that if g(1) = −1 and g(2) = 1 (normalizing

constant is ”hidden” in this function), sequences {P (i)
1 }∞i=1, {P (i)

2 }∞i=1 oscillate for
P ∗1 ≤ P ∗2 with the period k = 2, and odd periods (excluding invariant distributions)
are not possible.
For g(0) = a, g(1) = −1, g(2) = 1 and an even period k = 2l, l = 1, 2, ... we obtain

for P
(k)
0 (P

(k)
1 , P

(k)
2 remain unchanged for an even period)

P
(k)
0 = akP ∗0 + (−ak−1 + ak−2 − · · ·+ 1)P ∗1 + (ak−1 + ak−3 + · · ·+ a)P ∗2 ,

and after some trivial algebraic operations

(a− 1)(a+ 1)P ∗0 + (1− a)P ∗1 + aP ∗2 = 0,

which gives similar results as in the case that the support has size two. A sequence
of descendant distributions can oscillate only with period k = 2 if the parent distri-
bution is

P ∗0 = P ∗0 ,

P ∗1 =
aP ∗0 + P ∗0 − a− a2P ∗0

1− 2a
,

P ∗2 =
aP ∗0 + a2P ∗0 + 1− 2P ∗0 − a

1− 2a
.

Naturally, there are some conditions which the parent distribution must satisfy so
that its descendants of all generations be proper probability distributions. The
conditions are presented in Table 1. For every a and P ∗0 from these intervals, a
sequence of descendant distributions oscillates with period k = 2. There is only one
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a P ∗0

(−∞, 0)
(

0, 1
3−a

)
(
0, 1

2

) (
−a

a2−a−1 ,
1

3−2a2

)
(

1
2 , 1
) (

1
3−2a2 ,

−a
a2−a−1

)
Table 1: Conditions for a and P ∗0 .

exception, when the period is k = 1 and the distribution is invariant with respect
to the partial summation, which is true if the parent distribution is

P ∗0 =
1

4− 3a
, P ∗1 =

1− a
4− 3a

, P ∗2 =
2(1− a)

4− 3a
.

The case with g(2) = −1 can be obtained analogically.
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Abstract: In this short paper, we consider linear blind source separation for
stochastic processes that have conditional dependency structures. We present a
conditional version of a linear blind source separation model. The conditional de-
pendency structure is imposed to the model via discrete time martingales. We
present some theoretical foundations for solving the corresponding conditional blind
source separation problem and provide discussion regarding our future work on the
topic.
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1 Introduction

The blind source separation (BSS) problem is a recurring and a widely studied topic
in several fields of science. Usually, the goal in BSS is to reverse the effects of an
unknown mixing system and to recover some signals of interest. There exists sev-
eral applications where blind source separation is utilized, e.g., finance, biomedical
applications and telecommunications, see [2] for a collection.
Linear BSS has been widely studied under assumptions of weakly stationary pro-
cesses. However, there exists an increasing demand for models that allow time
varying correlations, especially in applications of finance such as modeling finan-
cial returns. In this paper, we present a version of the linear BSS model called
the conditional blind source separation (cBSS) model, in which we assume that
the latent processes of interest are discrete time martingales. The presented cBSS
model is able to model conditional dependency structures, which are not captured
by traditional BSS models, and which are relevant in several financial applications.
In this short paper, we present the cBSS model and provide some theoretical ground-
work for solving the corresponding cBSS problem. In particular, we consider the
identification of the solutions for the cBSS problem. Furthermore, the finite sample
estimation procedure and the derivation of the corresponding asymptotical proper-
ties are discussed.

∗Corresponding author: niko.lietzen@aalto.fi



On blind source separation under martingales 47

2 Conditional blind source separation

Let (Ω,F ,F,P) be a filtered probability space where F := (Ft)t∈{0}∪N such that
F0 = {∅,Ω}. We use x ∈ mF to denote that x is F-measurable. We next present
a conditional blind source separation (cBSS) model. The presented version of the
cBSS model does not include a location parameter. A constant location parameter
could be straightforwardly implemented into the model, which would result in some
minor modifications on the following assumptions.

Definition 1. A Rp-valued stochastic process x• := (xt(ω))t∈{0}∪N follows a con-
ditional blind source separation (cBSS) model if

xt = Azt, for all t ∈ {0} ∪ N,

where A ∈ mF0 is a Rp×p-matrix of rank p and the Rp-process z• := (zt(ω))t∈N is
F-adapted and square-integrable such that,

(Z1) P [{ω ∈ Ω : z0(ω) = 0p}] = 1,

(Z2) E [zt | Ft−1] = zt−1, P-a.s.,

(Z3) ∃s, t ∈ N : E
[
zsz
>
s

]
= Λs, E

[
ztz
>
t

]
= Λt and Λ̃st = ΛsΛ

−1
t ,

where Λs ∈ mFs, Λt ∈ mFt are Rp×p-valued diagonal matrices with positive diag-
onal entries and Λ̃st is a diagonal matrix with distinct diagonal elements.

The latent process z•, given in Definition 1, satisfies the properties of a Rp-variate
discrete martingale. The martingale property of z• together with condition (Z1)
imply that the process is centered, i.e., E[zt] = 0p for every t ∈ N. Further-
more, since the process z• is square-integrable, the martingale property gives
E[ztz

>
t−τ ] = E[zt−τz

>
t−τ ], τ ∈ N. Since every autocovariance matrix is equal to the

covariance matrix at some point of time, many widely used blind source separation
procedures are unapplicable here. For example, classic versions of the algorithm for
multiple unknown signals extraction (AMUSE) [7] and second order blind identifi-
cation (SOBI) [1] procedures rely on assumptions of weak stationarity. Since there
exists no nontrivial martingales that are weakly stationary, no nontrivial weakly
stationary processes zt can satisfy conditions (Z1)-(Z3). Thus, it is not surprising
that AMUSE and SOBI cannot be applied here. The assumption that Λs and Λt

have positive diagonal elements is natural, since they are variances. Consequently,
the diagonal entries of Λ̃ are also positive. We will further discuss the identification
condition (Z3) after the following definition that quantifies the solutions for the
cBSS problem.

Definition 2. Let x• be a process that follows the cBSS model, such that condition
(Z3) holds for some fixed s, t ∈ N. A Rp×p-valued matrix Γ is a solution to the
cBSS problem, if the process y• := (Γxt(ω))t∈{0}∪N satisfies conditions (Z1), (Z2)
and condition (Z3) holds for the fixed t and s.

Under the cBSS model, we have that the process x• is also a F-adapted and square-
integrable process that satisfies conditions (Z1) and (Z2). Thus, the identification
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of the solution Γ relies solely on condition (Z3). However, the condition (Z3)
is not enough to produce unique solutions for the cBSS problem. Let P be a
permutation matrix, D a diagonal matrix with positive diagonal entries and J a
sign-change matrix, that is, Jkk ∈ {−1, 1} for every k ∈ {1, . . . , p}. Then, let
ỹ• := (PJDΓxt(ω))t∈{0}∪N, where Γ is a solution to the cBSS problem. The
process ỹ• is square-integrable and F-adapted and it satisfies conditions (Z1) and
(Z2). Additionally, condition (Z3) is satisfied since,

E[ỹhỹ
>
h ] = PJDΛh(PJD)> = PDΛhDP> = Lh,

where Lh is a diagonal matrix with positive diagonal entries at the fixed points of
time h ∈ {s, t}. Furthermore, we have that,

LsL
−1
t = PDΛsDP>PD−1Λ−1

t D−1P> = PΛ̃stP
> = L̃st,

where L̃st is a diagonal matrix that has the same distinct diagonal entries, possibly
in some permuted order, as the matrix Λ̃st. Hereby, with the current cBSS model
assumptions, we can at best hope to recover the latent process up to the matrices
P,J and D.
Recovering the latent processes up to order and heterogeneous scaling is sufficient
for many applications, in particular, for the case when the most relevant information
of z̃• is contained in its waveform, i.e., its shape. These identifiability issues are
not considered to be problematic in the signal processing literature, see e.g. [6] for
further discussion.
It is hereby justified to not distinguish between solutions that solve the same cBSS
problem. We say that solutions Γ1 and Γ2 are equivalent, if there exists a per-
mutation matrix P, a sign-change matrix J and a diagonal matrix (with positive
diagonal elements) D, such that Γ1 = PJDΓ2 and we denote the corresponding
equivalence relation as Γ1 ≡ Γ2. Note that under the cBSS model assumptions, we
have for every solution Γ that Γ ≡ A−1, that is, ΓA = PJD. With this equivalence
property between the solutions and the unknown mixing matrix A, we can present
a solution procedure for the cBSS problem.

Theorem 1. Let x• be a process that satisfies Definition 1 and let Σt = E[xtx
>
t ].

Then, every cBSS solution Γ satisfies the eigenvector-eigenvalue equation,

Σ−1
t ΣsΓ

> = Γ>L,

where L is a diagonal matrix with distinct diagonal elements.

Proof of Theorem 1. Since xt follows the cBSS model, we have for some fixed t that
Σt = AΛtA

> and,

ΣtΓ
> = AΛtA

>Γ> = AΛt (PJD)
>

= AΛ̃tP
>, (1)

where Λ̃t = ΛtDJ is a diagonal matrix with nonzero diagonal entries and conse-
quently invertible. By right-multiplying both sides of Eq. (1) with (Λ̃tP

>)−1, gives
that,

ΣtΓ
>PΛ̃−1

t = A. (2)
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Then, since Eq. (1) also holds for some fixed s 6= t, and by using Eq. (2), we get
that,

ΣsΓ
> = ΣtΓ

>PJD−1Λ−1
t ΛsDJP> = ΣtΓ

>PΛ̃stP
> = ΣtΓ

>L, (3)

where L = PΛ̃stP
> is a diagonal matrix that has the same distinct diagonal entries,

possibly in some permuted order, as the matrix Λ̃st. The claim then follows by left-
multiplying both sides of Eq. (3) with Σ−1

t .

Thus, by Theorem 1, we get solutions for the cBSS problem by finding the eigenvec-
tors of Σ−1

t Σs. As with eigenvalue-eigenvector problems usually, the eigenvectors
are only unique up to order and heterogeneous scaling, which is perfectly in line
with our identifiability conditions. Similar versions of Theorem 1 are often utilized
in the BSS estimation procedure, see e.g. [4, 5]. Note that, we can form a finite
sample version of Theorem 1 by replacing Σs and Σt with some appropriate estima-
tors. In practice, the fixed s, t can be chosen, e.g., such that the diagonal elements
of Λ̃st are as distinct as possible.
In the BSS literature, the model is often defined such that either Λs or Λt is e.g. the
identity matrix and the other is a diagonal matrix with distinct diagonal elements.
In this case, we can also identify the scaling matrix D, and we can think of the
estimation procedure as a two step process that includes finding a suitable scaling
and rotation for the latent x•. Note that the corresponding case is included in our
model, although in the estimations procedure one would have to fix the scales of
the eigenvectors accordingly.

3 Discussion and future work

In this short paper, we presented the conditional blind source separation (cBSS)
model and provided some theoretical foundations in order to solve the corresponding
cBSS problem. In future work, we will provide finite sample estimators for the cBSS
problem and derive some relevant asymptotic properties for them. Note that the
model assumptions we have made, in this paper, are minimal and in order to make
the estimation procedure meaningful, and make the derivation of the asymptotic
properties possible, we will have to require more structure from either the latent
process z• or from the matrix A.
The estimation procedure benefits significantly, if we considered the fully conditional
version of the cBSS model. The stronger version of condition (Z3) of Definition 1
is formed by requiring that the conditional covariance matrices E[zsz

>
s | Fs−1] and

E[ztz
>
t | Ft−1] are diagonal and that the product of the diagonal matrices has dis-

tinct diagonal entries. Clearly, these stronger conditions imply the current condition
(Z3) since E[zsz

>
s ] = E[E[zsz

>
s | Fs−1]] and similarly for t. The assumption of con-

ditional uncorrelated components seems to be a good middle ground between the
overly weak assumption of unconditional uncorrelated components and the overly
strong assumption of independent components.
If we, in addition to the conditional version of condition (Z3), replaced condition
(Z2) with E[zt | Ft−1] = 0, for every t ∈ N, we would get a latent martingale dif-
ference sequence z• that follows the so-called conditional uncorrelated components
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(CUC) model presented in [3]. Note that the CUC model is a special case of the
cBSS model and thus the theory presented in this paper can be directly applied to
the CUC case also. The CUC model is motivated by financial applications where
conditional dependency structures are present, such as generalized auto-regressive
conditional heteroscedasticity (GARCH) processes, see [3] for additional details.
Thus, considering GARCH processes in the context of the cBSS model could pro-
vide fruitful results from both the theoretical and the applied perspective.
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Abstract: The fractional Vasicek model, described by the stochastic differential
equation dXt = (α− βXt) dt+ γ dBHt , where BH is a fractional Brownian motion,
is studied. It is assumed that the parameters x0 ∈ R, γ > 0 and H ∈ (0, 1) are
known. The problem of estimating α and β is considered. Least squares, maxi-
mum likelihood and alternative estimators are constructed, and their asymptotic
properties are established.
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1 Introduction

The standard Vasicek model was proposed and studied by O. Vasicek [6] in 1977
for the purpose of interest rate modeling. It is described by the following stochastic
differential equation

dXt = (α− βXt) dt+ γ dWt, (1)

where α, β, γ ∈ R+, and W is a standard Wiener process. From the financial point
of view, β corresponds to the speed of recovery, the ratio α/β is the long-term
average interest rate, and γ represents the stochastic volatility. Now the Vasicek
model is widely used not only in finance, but also in various scientific areas such as
economics, biology, physics, chemistry, medicine and environmental studies.
In our research we deal with the fractional Vasicek model of the form

dXt = (α− βXt) dt+ γ dBHt , (2)

where the Wiener process W is replaced with BH , a fractional Brownian motion
with Hurst index H ∈ (0, 1). This generalization of the model (1) enables one to
model processes with long-range dependence. Such processes appear in finance,
hydrology, telecommunication, turbulence and image processing.

∗Corresponding author: stanislav.lohvinenko@gmail.com
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2 Model description

Let (Ω,F,P) be a complete probability space. Let BH = {BHt , t ≥ 0} be a
fractional Brownian motion on this probability space, that is, a centered Gaussian
process with covariance function

EBHt B
H
s =

1

2

(
s2H + t2H − |t− s|2H

)
.

We consider the continuous (and even Hölder up to order H) modification of BHt
that exists due to the Kolmogorov theorem.
We study the fractional Vasicek model, described by the stochastic differential equa-
tion

Xt = x0 +

t∫
0

(α− βXs) ds+ γBHt , t ≥ 0. (3)

We assume that the parameters x0 ∈ R, γ > 0 and H ∈ (0, 1) are known. Such
assumption can be made due to existence of many methods to estimate parameters
γ and H (for example, see [1] and [3, Remark 2.1]). The main goal is to estimate
parameters α ∈ R and β > 0 by continuous observations of a trajectory of X on the
interval [0, T ].
Following [2], for 0 < s < t ≤ T , define

κH = 2HΓ (3/2−H) Γ (H + 1/2) , λH =
2HΓ(3− 2H)Γ(H + 1/2)

Γ(3/2−H)
,

kH(t, s) = κ−1
H s1/2−H(t− s)1/2−H , wHt = λ−1

H t2−2H .

Define also next stochastic processes

St =
1

γ

∫ t

0

kH(t, s) dXs, PH(t) =
1

γ

d

dwHt

∫ t

0

kH(t, s)Xs ds,

QH(t) =
1

γ

d

dwHt

∫ t

0

kH(t, s)(α− βXs) ds =
α

γ
− βPH(t).

Process S is called fundamental semimartingale. It has the following properties [2,
Theorem 1]:

1. process S is a (Ft)-semimartingale with the decomposition

St =

∫ t

0

QH(s) dwHs +MH
t , (4)

where MH
t =

∫ t
0
kH(t, s) dBHs is a Gaussian martingale, whose variance func-

tion 〈MH〉 = wH ;

2. process X admits the representation

Xt =

∫ t

0

KH(t, s) dSs, (5)
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where

KH(t, s) = γH(2H − 1)

∫ t

s

rH−1/2(r − s)H−3/2 dr;

3. the natural filtrations of processes S and X coincide.

3 Main results

Let us introduce the least squares estimators of the unknown parameters:

α̂
(1)
T =

(XT −X0)
∫ T

0
X2
t dt−

∫ T
0
Xt dXt

∫ T
0
Xt dt

T
∫ T

0
X2
t dt−

(∫ T
0
Xt dt

)2 , (6)

β̂
(1)
T =

(XT −X0)
∫ T

0
Xt dt− T

∫ T
0
Xt dXt

T
∫ T

0
X2
t dt−

(∫ T
0
Xt dt

)2 . (7)

Theorem 1 ([5, Theorem 2.1]). Let H ∈ [ 1
2 , 1). Then the estimators α̂

(1)
T and β̂

(1)
T

are strongly consistent.

Since the discretization and simulation of α̂
(1)
T and β̂

(1)
T when H 6= 1/2 is quite

difficult, we introduce alternative estimators:

β̂
(2)
T =

 1

γ2HΓ (2H)T 2

T ∫ T

0

X2
t dt−

(∫ T

0

Xt dt

)2
− 1

2H

, (8)

α̂
(2)
T =

β̂
(2)
T

T

∫ T

0

Xt dt. (9)

Theorem 2 ([5, Theorem 2.2]). Let H ∈ (0, 1). Then the estimators α̂
(2)
T and β̂

(2)
T

are strongly consistent.

In applications usually the observations cannot be continuous. The estimators α̂
(2)
T

and β̂
(2)
T can be discretized as follows.

Let h > 0. Assume that a trajectory of X is observed at times tk = kh, k =
0, 1, . . . , n. Define

β̂(3)
n =

 1

γ2HΓ (2H)n2

n n−1∑
k=0

X2
kh −

(
n−1∑
k=0

Xkh

)2
− 1

2H

, (10)

α̂(3)
n =

β̂
(3)
n

n

n−1∑
k=0

Xkh. (11)
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Theorem 3 ([5, Theorem 2.3]). Let H ∈ (0, 1). Then the estimators α̂
(3)
n and β̂

(3)
n

are strongly consistent.

Applying the analog of the Girsanov formula for a fractional Brownian motion (see
[2, Theorem 3]), we obtain next likelihood ratio:

ΛH(T ) = exp

{∫ T

0

QH(t) dSt −
1

2

∫ T

0

(QH(t))
2
dwHt

}

= exp

{
α

γ
ST − β

∫ T

0

PH(t) dSt −
α2

2γ2
wHT

+
αβ

γ

∫ T

0

PH(t) dwHt −
β2

2

∫ T

0

(PH(t))
2
dwHt

}
.

(12)

Now we can construct maximum likelihood estimators.

Theorem 4 ([4, Theorem 3.1]). Let H > 1/2 and β is known. The MLE for α is

α̂
(4)
T =

ST + β
∫ T

0
PH(t) dwHt

wHT
γ. (13)

It is unbiased, strongly consistent and normal:

T 1−H
(
α̂

(4)
T − α

)
d
=N

(
0, λHγ

2
)
.

Theorem 5 ([4, Theorem 3.2]). Let H > 1/2 and α is known. The MLE for β is

β̂
(5)
T =

α
γ

∫ T
0
PH(t) dwHt −

∫ T
0
PH(t) dSt∫ T

0
(PH(t))

2
dwHt

. (14)

It is strongly consistent and asymptotically normal:

√
T
(
β̂

(5)
T − β

)
d−→N (0, 2β).

Theorem 6 ([4, Theorem 3.4]). Let H > 1/2. The MLEs for α and β equal

α̂
(6)
T =

∫ T
0
PH(t) dSt

∫ T
0
PH(t) dwHt − ST

∫ T
0

(PH(t))2 dwHt(∫ T
0
PH(t) dwHt

)2

− wHT
∫ T

0
(PH(t))2 dwHt

γ,

β̂
(6)
T =

wHT
∫ T

0
PH(t) dSt − ST

∫ T
0
PH(t) dwHt(∫ T

0
PH(t) dwHt

)2

− wHT
∫ T

0
(PH(t))2 dwHt

.

(15)

They are consistent and asymptotically normal:

T 1−H
(
α̂

(6)
T − α

)
d−→N (0, λHγ

2),
√
T
(
β̂

(6)
T − β

)
d−→N (0, 2β).
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It can be seen that both estimators α̂
(6)
T and β̂

(6)
T depend on four elements: ST ,∫ T

0
PH(t) dSt,

∫ T
0
PH(t) dwHt and

∫ T
0

(PH(t))2 dwHt . Calculation of their joint mo-
ment generating function [3, Theorem 3.4] gives the following result.

Theorem 7 ([3, Theorem 4.2]). Let H > 1/2. The vector maximum likelihood

estimator
(
α̂

(6)
T , β̂

(6)
T

)
for vector parameter (α, β) is asymptotically normal:T 1−H

(
α̂

(6)
T − α

)
√
T
(
β̂

(6)
T − β

)  d−→ N
([

0
0

]
,

[
λHγ

2 0
0 2β

])
, T →∞, (16)

hence estimators α̂
(6)
T and β̂

(6)
T are asymptotically independent.
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2Lab of Statistics and Data Analysis, Department of Statistics and
Actuarial-Financial Mathematics, University of the Aegean, Karlovasi, Samos

83200, Greece

Abstract: This work deals with multi state systems that we model by means of
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times in a given state which are seen to be independent not identically distributed
random variables are assumed to belong to two different general classes of dis-
tributions. The first class of distributions is closed under maxima and contains
distributions, like the Bernoulli distribution, the power function distribution and
the extreme value Type I distribution, while the second is closed under minima
and includes the exponential, the Weibull, the Pareto, the Rayleigh and the Erlang
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of distributions and we obtain maximum likelihood estimators of the parameters
of interest and investigate their asymptotic properties. Furthermore, plug-in type
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1 Introduction

Let us consider a multi-state system with state space E = {1, 2, . . . , N}, defined on
a probability space (Ω,F , P ). As it will introduced in next Section the evolution of
the system is assumed to follow a continuous time semi-Markov process.
The main feature of this work is that the sojourn times between states are assumed
to belong to two different general classes of distributions. The first class of distribu-
tions is closed under maxima and contains several distributions, like the Bernoulli
distribution, the power function distribution and the extreme value Type I distri-
bution. The second class is closed under minima and includes the exponential, the
Weibull, the Pareto, the Rayleigh and the Erlang truncated exponential distribution
(cf. [1]). However, here we concentrated only on the first class of distributions.
The outline of the paper is as follows. Some preliminaries regarding semi-Markov
processes and multi-state systems for a family of distributions closed under maxima
are presented in Section 2. Section 3 provides the likelihood function and the
associated maximum likelihood estimators of the parameters under investigation.
Section 4 is devoted to study the Markov renewal function and the semi-Markov
renewal matrix. Finally, Section 5 presents simulation results for evaluating the
accuracy of the proposed methodology.

2 Semi-Markov Processes and Multi State Sys-
tems

Semi-Markov (SM) processes are typical tools for the modeling of technical systems.
Such classes of stochastic processes generalize typical Markov jump processes by
allowing general distributions for sojourn times [4].
Assume that the time evolution of the system is governed by a stochastic process
Z = (Zt)t∈R+

. Let S = (Sn)n∈N be the successive time points when state changes in
(Zt)t∈R+

occur and J = (Jn)n∈N the successive visited states at these time points.
Furthermore, X = (Xn)n∈N are the successive sojourn times in the visited states.
Therefore, Xn = Sn − Sn−1, n ∈ N∗, and, by convention, we set X0 = S0 = 0.
We assume that (J, S) is a Markov renewal process (cf. [4]) and Z = (Zt)t∈R+

is a semi-Markov (SM) process associated to (J, S), where Zt := JN(t), with
N(t) := max{n ∈ N | Sn ≤ t}, t ∈ R+. A SM model is characterized by its initial
distribution α = (α1, . . . , αN ), αj := P(J0 = j), j ∈ E, and by the semi-Markov
kernel Qij(t) := P(Jn = j,Xn ≤ t|Jn−1 = i). Let us also introduce the transition
probabilities of the embedded Markov chain (Jn)n∈N, pij := P(Jn = j|Jn−1 = i) =
limt→∞Qij(t), and the conditional sojourn time distribution functions

Wij(t) := P(Sn − Sn−1 ≤ t|Jn−1 = i, Jn = j)P(Xn ≤ t|Jn−1 = i, Jn = j). (1)

Observe that Qij(t) = pijWij(t).
Let Tij be a potential time spent in state i before moving (directly) to state j. We
denote by Fij(t; θij) its cumulative distribution function (cdf), where θij is the m-
dimensional parameter involved in the underlying distribution. We assume that the



58 A. Makrides et al.

distribution of Tij is absolutely continuous with respect to the Lebesgue measure;
an associated density is denoted by fij(t; θij).
The dynamic of the system is as follows: the next state to be visited after state i
is the one for which Til is the maximum. Thus, for our semi-Markov system, the
semi-Markov kernel becomes

Qij(t) = P(max
l

Til ≤ t & the max occurs for j|Jn−1 = i) = pijWi•(t),

where pij = P(Jn = j|Jn−1 = i) = P(Tij ≥ Til,∀l|Jn−1 = i) and

Wij(t) = P(max
l

Til ≤ t|Jn−1 = i) =: Wi•(t), independent of j,

is the cdf of the sojourn time in state i (unconditional to the next state to be
visited). Note that

∑
j Qij(t) = Wi•(t), where Wi•(t) is absolutely continuous

w.r.t. the Lebesgue measure and has a density denoted by fi•(t).

INID RANDOM VARIABLES

As mentioned earlier, we consider the class of distributions closed under maxima,
focus on independent but not necessarily identically distributed (inid) random vari-
ables and consider the case where the distributions Fij(·; θij), i, j = 1, . . . , N, are
of the same functional form but with different parameters. A member of this class
with parameter a is assumed to verify [1]

F (t; a) := (F (t; 1))
a
, (2)

F (t; a) is absolutely continuous w.r.t. Lebesgue measure with density f(t; a).
The above class includes the Bernoulli, the power function and the extreme value
Type I distributions. A representative example comes from structural engineering
where engineers are interested in stress and strain diagrams that graphically display
the basic material characteristics when designing various types of constructions like
bridges, highways or buildings.
The following result, shows that the maximum order statistic from an inid random
sample from the above class has a distribution belonging to the same class. More
precisely, the above class of distributions is closed under maxima.

Lemma 1. Let X1, . . . , XN be inid random variables such that Xi ∼ F (x; ai) which
belongs to class (2), i = 1, 2, . . . , N . Then, the distribution function F (N) of the
maximum order statistic X(N) belongs also to (2) (cf. [1]).

Under the above class of distributions, the following result concerning the main
semi-Markov characteristics can be proved. For notational convenience, we set
F (t) := F (t; 1), f(t) := f(t; 1) and Qij (t; aim;m = 1, . . . , N) := Qij(t).
Note that, the dependence of semi-Markov kernel to aim is due to the fact that the
parameter of F (·) included in the semi-Markov kernel is

∑
m∈E

aim.
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Proposition 1. Under the setup of this section, the following results hold:

Qij(t) =
aij∑

m∈E
aim
· [F (t)]

∑
m∈E

aim
, pij =

aij∑
m∈E

aim
, (3)

Wi•(t) = [F (t)]

N∑
m=1

aim
and fi•(t) =

N∑
m=1

aim [F (t)]

N∑
m=1

aim f(t)

F (t)
. (4)

3 Maximum Likelihood Estimation

For estimation purposes, one sample path as well as several sample paths are consid-
ered. On each situation we investigate both the (right) censored and the uncensored
cases. However, here we deal with the general case where some of the sojourn times
are censored either at the beginning and/or at the end for several trajectories. Given
L censored sample paths,{
x

(l)δ
(l)
b

0 , j
(l)
0 , x

(l)
1 , j

(l)
1 , x

(l)
2 , . . . , j

(l)

N l(M)
, u

(l)δ
(l)
e

M

}
, l = 1, . . . , L,

where δ
(l)
b , δ

(l)
e take the values 1 or 0 if we have censoring or not, respectively. Then

the associated likelihood is

L =

(∏
i∈E

α
Ni,0(L)
i

) ∏
i,j∈E

p

L∑
l=1

N
(l)
ij (M)

ij

 L∏
l=1

∏
i∈E

N
(l)
i (M)∏
k=1

fi•(x
(l,k)
i )

×
×

∏
i∈E

N
b
i•(L)∏
k=1

W i•(x
(k)
i,0 )

∏
i∈E

N
e
i•(L)∏
k=1

W i•(x
(k)
i,M )

 . (5)

The MLE âij(L,M) can be easily obtained from the above equation.

4 Markov Renewal Function and semi-Markov
Transition Matrix

The Markov renewal function Ψij(t), i, j ∈ E, t ≥ 0, is defined as (cf. [4])

Ψij(t) := Ei[Nj(t)] =

∞∑
n=0

∑
k∈E

∫ t

0

Qik(ds)Q
(n−1)
kj (t− s) (6)

The semi-Markov transition matrix (function) is defined as

Pij(t) := P(Zt = j|Z0 = i), i, j ∈ E. (7)
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Let W (t) := diag (Wi(t); i ∈ E) = diag

(∑
j

Qij(t); i ∈ E

)
= diag (Q · 1N ) (t) be

the diagonal matrix with the (i, i) element equal to Wi(t) =
∑
j∈E

Qij(t), where

1N = (1, · · · , 1︸ ︷︷ ︸
N

)>, ()> denoting the transposed of a vector.

Then the semi-Markov transition matrix is given by [4]

P (t) =
(

(IN −Q)
(−1)

? (IN −W )
)

(t) = (Ψ ? (IN −W )) (t), (8)

where Ψ(t) = (Ψij(t))i,j∈E and it is shown that (IN −Q)
(−1)

(t) = Ψ(t).

Using the expressions given in (3), (4) and the estimators of the previous Section,
the estimators of Ψ(t) and P (t) are easily obtained.

5 Simulations

A series of simulations in R is analyzed to evaluate the accuracy of the proposed
procedure. The case of L sample paths of a semi-Markov process with censoring
rate 50% at the beginning and/or at the end is considered with M = 1000. The
sojourn times follow the Power Function distribution
f(t; aij) =

aij
caij

taij−1, 0 ≤ t ≤ c = 100, with aii = 0, a12 = 0.5, a13 = 1, a21 = 1.2,
a23 = 0.9, a31 = 1.4, a32 = 1.5, i = 1, 2, 3.

PPPPPPS.E.
L

5 10 100 1000

âij(L,M) 2.423613 2.98703× 10−1 6.50080× 10−2 4.48959× 10−2

p̂ij(L,M) 2.67957× 10−2 1.95020× 10−2 7.11892× 10−2 4.09628× 10−4

Table 1: Standard errors of âij(L,M) and p̂ij(L,M) for various L.

PPPPPPS.E.
t

1 25 50 100

P̂ij(t;L,M) 1.61768× 10−7 5.61013× 10−5 2.23401× 10−3 9.09540× 10−4

Table 2: Standard errors of the estimators P̂ij(t;L,M) for various t.

The results show that the S.E. decrease as L increases which implies a better ac-
curacy for âij(L,M) and p̂ij(L,M). Furthermore, P̂ij(t;L,M) is extremely good
as expected, for small values of t it starts deteriorating as t increases and becomes
better again as t approaches the upper limit.
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Abstract: Collier and Dalalyan [2] study the problem of common p-dimensional
mean vector estimation of inliers among n independent Gaussian vectors by itera-
tively using soft-thresholding operator. The presented method is the approximation
of the solution of a non-convex optimization problem involving the Huber function.
We simplify this problem and reduce it to the Fermat-Weber location problem using
Huber function instead of Euclidean distance. A modified version of the Iteratively
Re-weighted Least Squares (IRLS) method is presented that minimizes the result-
ing objective function along with a global convergence proof given that the starting
point is chosen accordingly. We illustrate the robustness of the resulting estima-
tor through numerical experiments and examples, which are nicely consistent with
theoretical results.
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1 Introduction

The problem of finding a point that minimizes the sum of the distances to the given
points Y1, . . . , YN is known as the Fermat-Weber problem [1] and is formulated as
follows

min
x∈Rp

N∑
i=1

‖Yi − x‖2. (1)

It can be easily seen that the closed form expression cannot be found for the solution
of (1). However, the problem is convex and can be efficiently solved numerically. A
method that does so with provable convergence is known as Iteratively Re-weighted
Least Squares (IRLS) [4]. The idea of IRLS is to approximate each summand of (1)

∗Corresponding author: arsh.minasyan@gmail.com
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with a quadratic function, which always has a higher objective value. The analysis
of IRLS method shows that the method converges globally.
In this paper we introduce a modified version of the Fermat-Weber problem, in
which we replace the `2 norm with a Huber function. The motivation behind this
relaxation comes from a statistical viewpoint. Imagine the problem of mean value
estimation in a setup where the data is corrupted by some small number of outliers.
Even a very small number of outliers can cause large bias in the standard framework,
even though the posed optimization problem will be solved accurately. Hence, we
choose Huber function as a robust function to solve the corresponding optimization
problem.

2 Fermat-Weber Location Problem with Huber
Function

Consider the following optimization problem

x? = arg min
x∈Rp

N∑
i=1

ρδ(‖Yi − x‖2) (2)

for a set of points Y = {Y1, Y2, . . . , YN} with Yi ∈ Rp and the Huber function ρδ
defined as in [3]

ρδ(x) =

{
x2/2, if |x| ≤ δ,
δ|x| − δ2/2, o.w.

(3)

The standard IRLS method [4] uses the following simple idea: at iteration k, ap-
proximate the objective function with a quadratic function so that the values of
the function and its derivative are equal at the current point x(k). Further in this
section we show how IRLS method can be modified in order to be applicable to (2)
preserving the desirable properties of the IRLS estimator.
For x(k) 6= Yi, let tik = Yi − x(k) and define the following function

gik(x) =

{
1
2‖tik‖

2
2, if ‖tik‖2 ≤ δ,

δ
2

(
1

‖tik‖2 ‖tik‖
2
2 + ‖tik‖2 − δ

)
, o.w.

(4)

It is straightforward to check that at point x(k) the values and derivatives of ρδ(‖Yi−
x‖2) and gik(x) coincide. Hence, instead of solving (2) directly we minimize the
following function

min
x∈Rp

N∑
i=1

wik‖Yi − x‖22 +
∑
i∈Ok

δ

2
(‖tik‖2 − δ), (5)

where Ok := {i ∈ [N ] : ‖tik‖2 > δ} and wik are defined as follows

wik =

{
1
2 , if ‖tik‖2 ≤ δ,

δ
2‖tik‖2 , o.w.

(6)
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Notice that (5) is equivalent to

min
x∈Rp

N∑
i=1

wik‖Yi − x‖22, (7)

the solution of which reads as

x?k :=

∑N
i=1 wikYi∑N
i=1 wik

= arg min
x∈Rp

N∑
i=1

wik‖Yi − x‖22.

However, we need to do something more for achieving the global convergence prop-
erty. The idea is that we do not want to make too large steps, which formally
translate into the following two rules:

1. if ‖tik‖2 > δ and ‖Yi − x?k‖2 ≤ δ, instead of x(k+1) = x?k we take x(k+1) = x̃k,
where x̃k is defined as follows:

x̃k ∈ αx(k) + (1− α)x?k for some α ∈ (0, 1) and ‖Yi − x̃k‖2 = δ. (8)

2. if ‖tik‖2 ≤ δ and ‖Yi − x?k‖2 > δ, instead of x(k+1) = x?k we take x(k+1) = x̃k,
where x̃k is defined exactly the same way as in (8).

For the rest of the cases the update rule reads as follows:

x(k+1) =

∑N
i=1 wikYi∑N
i=1 wik

. (9)

Denote

fk(x) =

N∑
i=1

wik‖Yi − x‖22 +
∑
i∈Ok

δ

2
(‖tik‖2 − δ), f(x) =

N∑
i=1

ρδ(‖Yi − x‖2). (10)

Lemma 1. There exists α ∈ (0, 1) such that for x̃(k) = αx(k) + (1− α)x?k it holds

f(x̃(k)) ≤ fk(x̃(k)) ≤ fk(x(k)) = f(x(k)). (11)

Proof. Notice that the inequality fk(x) ≤ fk(x(k)) is true for all x := αx(k) + (1−
α)x?k, due to the convexity of fk(·), where α ∈ (0, 1). Next, we will show that there is

a point on the line connecting x(k) and x?k such that the first inequality holds as well.
From the definition of gik(·) it follows that for the cases when for some i ∈ [n] either
‖tik‖2 ≤ δ and ‖tik+1‖2 ≤ δ or ‖tik‖2 > δ and ‖tik+1‖2 > δ, then (11) is indeed true,
since for all i ∈ [n] it holds ρδ(‖Yi − x(k+1)‖2) ≤ wik‖Yi − x(k+1)‖22 + δ

2 (‖tik‖2 − δ)
then f(x(k+1)) ≤ fk(x(k+1)). In other cases when ‖tik‖2 ≤ δ and ‖tik+1‖2 > δ or
‖tik‖2 > δ and ‖tik+1‖2 ≤ δ, we take the projection of x?k onto the ball ‖Yi− x‖2 ≤
δ. Now, according to (8) we will get α1, . . . , αp, where p is the number of cases
for which the projection is needed. Notice that α = max{α1, . . . , αp} we obtain

x̃k = αx(k) + (1− α)x?k, for which ‖tik‖2 ≤ δ and ‖Yi − x̃k‖2 ≤ δ or ‖tik‖2 > δ and
‖Yi − x̃k‖2 > δ is true for all i ∈ [n], which completes the proof.
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Remark 1. The resulting α = max{α1, . . . , αp} will be projected only on the ball

that is the closest to the point x(k), however ensuring that both x(k) and x̃(k) are
either inside or outside of all balls ‖Yi − x‖2 ≤ δ, where i ∈ [p].

The following lemma can be easily verified and the formal proof is omitted from the
paper.

Lemma 2. If x(k) = x? then x(k+1) = x? and if x(k) 6= Yi for all i ∈ [N ] and
x(k+1) = x(k) then x(k) = x?.

x(k)

[IRLS]x?k =: x(k+1)

[Pr-IRLS]x̃(k) =: x(k+1)

Yi

Theorem 1. For all but countable set of initial values x(0) and for all i ∈ [N ] if at
each iteration k ≥ 1 x(k) 6= Yi then the above defined sequence {x(k)}k≥1 converges
to x?.

Proof. For all but countable set of initial values x(0), the sequence of x(k)s lies inside
the convex hull of Y1, . . . , YN , which is a compact set. After applying Bolzano–

Weierstrass theorem, we have liml→∞ x
(k)
l = x. Showing that x ≡ x? will prove

the theorem. If x(k+1) = x(k) for some k and x(k) 6= Yi for all i ∈ [N ], then
by Lemma 2 x(k) = x?. Otherwise, by Lemma 1 we have f(x(0)) > f(x(1)) >

f(x(2)) > · · · > f(x(k)) > · · · > f(x?). Hence, limk→∞ f(x
(k)
l ) − f(T (x

(k)
l )) = 0,

where T (·) is the update rule described above. Then, the continuity of T (·) implies

liml→∞ T (x
(k)
l ) = T (x), yielding f(x) = f(T (x)) and T (x) = x, if x 6= Yi for all
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i ∈ [N ], then by Lemma 2 x ≡ x?. Given the assumption that no x(k) coincides
with one of the given datapoints Yi concludes the proof of the theorem.
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Figure 1: N = 200, p = 30, ε = 0.2. Inlier distribution: N (10, Ip), Outlier dis-
tribution: N (10 + 5 · θ, Ip) with θ ∈ Rp and ‖θ‖0 ≤ ε · N , non-zero elements of

θ are i.i.d. from U [0, 1]. Mean-value start: x(0) := N−1
∑N
i=1 Yi, random start:

x(0) ∼ N (0, Ip).

The update rule for ‖tik‖2 > δ and ‖Yi − x?k‖2 ≤ δ is provided in Figure 2. Figure
1 illustrates the convergence of the described method on a simulated dataset. In
the plots we indicated the true and sample mean values to show that the obtained
solution can be seen as a robust mean estimator for inliers.
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Abstract: Imposing a nonparametric shape constraint in a statistical model has
shown its benefit on several occasions, for example in circumstances where a para-
metric model is hard to justify but a shape constraint on the distribution is natural.
We consider constraints on an unknown family of distributions (Fx)x∈X, with a fixed
subset X ⊂ R, and discuss nonparametric estimation procedures based on a sample
(X1, Y1), (X2, Y2), . . . , (Xn, Yn) such that, conditional on the Xi, the Yi are inde-
pendent random variables with distribution functions FXi .
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1 Introduction

For any fixed set X ⊂ R, let (Fx)x∈X be a family of conditional distribution functions
of the form Fx(y) := P(Y ≤ y |X = x), for (x, y) ∈ X×R. Suppose that we observe
n ≥ 1 pairs

(X1, Y1), (X2, Y2), . . . , (Xn, Yn) ∈ X× R,

such that, conditional on X1, X2, . . . , Xn, the responses Y1, Y2, . . . , Yn are indepen-
dent with respective distribution functions FX1 , FX2 , . . . , FXn .

In this article, we treat (Fx)x∈X as unknown and investigate nonparametric estima-
tion methods for the family of distribution functions, quantiles or densities under
various shape constraints.

∗Corresponding author: alexandre.moesching@stat.unibe.ch
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Usual Stochastic Order. The family (Fx)x∈X is stochastically ordered if:

For any fixed y ∈ R, Fx(y) is decreasing in x ∈ X. (1)

Such a stochastic order appears natural on several occasions. For example, an
employee’s income Y presumably increases with their age X. In forecasting, the
measured cumulative precipitation amount Y is expected to increase with the nu-
merical predictions X of the same quantity.
The above stochastic ordering constraint has a dual characterization in terms of
the minimal and maximal β-quantiles of Fx, respectively defined by F−1

x (β) :=
min{y ∈ R : Fx(y) ≥ β} and F−1

x (β+) := inf{y ∈ R : Fx(y) > β}, for each x ∈ X
and β ∈ (0, 1). More precisely, (1)⇔(a)⇔(b) with:
(a) F−1

x (β) is increasing in x ∈ X for any fixed β ∈ (0, 1).
(b) F−1

x (β+) is increasing in x ∈ X for any fixed β ∈ (0, 1).
Let Qx(β) be any β-quantile of Fx and assume that it is increasing in x ∈ X.
The estimation of (Fx)x∈X under constraint (1) can be done via nonparametric

monotone least squares, as discussed in [3], with the estimator (F̂x)x∈X typically
computed with the pool-adjacent-violators algorithm [8]. On the other hand, non-

parametric monotone regression quantiles gives estimators (Q̂x)x∈X of (Qx)x∈X, see
[4].
In our manuscript [6], we give detailed descriptions of each of the aforementioned

estimators and prove that the quantiles of (F̂x)x∈X yield a large family of estimated

quantile curves containing the estimators (Q̂x)x∈X, but also smoother ones. This

shows that the estimators Q̂x are consistent with the quantiles of F̂x and that these
two estimation techniques provide two equivalent ways to characterize the unknown
distribution.

Likelihood Ratio Order. Suppose that Fx has density fx w.r.t. Lebesgue mea-
sure for each x ∈ X. Then, the family (Fx)x∈X is increasing in the likelihood ratio
order if:

For any fixed x1, x2 ∈ X, x1 < x2,
fx2

(y)

fx1
(y)

is increasing in y ∈ R. (2)

One can verify that (2) implies (1). This constraint finds its interest for example
in discriminant analysis, where the confidence that an observation y comes from
population Fx2 rather than Fx1 increases with fx2(y)/fx1(y). In statistical testing,
uniformly most powerful tests can be build when the likelihood ratio is increasing
in y, see [5].
The estimation of (fx)x∈X under constraint (2) has been studied in the two-sample
case by [10], that is, when #X = 2. Their estimator is nevertheless not fully
nonparametric as they maximize a smoothed log-likelihood which necessitates a
choice of a kernel function and its bandwidth. This method was chosen because the
standard log-likelihood is unbounded otherwise, which may explain why the case of
general subsets X ⊂ R has not received any attention in the literature.
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2 Likelihood Ratio Order with a Shape Constraint

In our ongoing work [7], we impose a log-concave shape constraint on the family of
densities (fx)x∈X. This additional qualitative constraint, combined with likelihood
ratio ordering, enables us to get rid of any choice of tuning parameter. Furthermore,
log-concave densities are of particular interest as they encompass a large family of
parametric densities and are a subclass of unimodal densities. Log-concave density
estimation is discussed in [2, 9].
In the present setting, the log-concavity constraint is set as follows: Suppose that
(Fx)x∈X is such that, for each x ∈ X, Fx can be written as

Fx(y) =

∫ y

−∞
expϕx(s) ds, for y ∈ R,

with ϕx : R → [−∞,∞) a concave and upper semicontinuous (c.u.s.c.) function
satisfying:

For any fixed y ∈ R, ϕ′x(y+) is increasing in x ∈ X. (3)

The above right-sided derivative has the following meaning: Define for each x ∈ X
the domain of ϕx as dom(ϕx) := {y ∈ R : ϕx(y) > −∞} 6= ∅ and the right-sided
derivative of ϕx at y ∈ R to be the usual right-sided derivative for y ∈ dom(ϕx),
equal to ∞ for y < inf dom(ϕx) and −∞ for y > sup dom(ϕx).
The equivalence between constraints (2) and (3) is immediate.

Maximum Likelihood Formulation

Without loss of generality, the set of data pairs D := {(Xi, Yi)}1≤i≤n can be re-
stricted to fulfill a specific geometric property (see [7]) under which one shows that
the normalized log-likelihood

l(ϕ) :=
1

n

n∑
i=1

ϕXi(Yi) (4)

is bounded from above when restricted to the set

Θ1 :=
{
ϕ := (ϕx)x∈X : ϕ satisfy (3), ϕx is c.u.s.c. and

∫
expϕx = 1

}
.

Let us define the marginal datasets X := {Xi}1≤i≤n and Y := {Yi}1≤i≤n. Two
issues can be identified if one were to estimate the unknown ϕ := (ϕx)x∈X by a
maximizer of (4) over Θ1. First, such a maximizer is not necessarily unique, since
the value of ϕx for x ∈ X \ X is irrelevant for the computation of l, as long as it
satisfies all the requirements of Θ1. Secondly, it is not straightforward to deal with
the constraint

∫
expϕx = 1 as such. Therefore, we instead consider the modified

log-likelihood

L(ϕ) :=

R∑
r=1

S∑
s=1

wr,s

(
ϕxr (ys)−

∫ ∞
−∞

expϕxr (y) dy

)
(5)
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with x1 < · · · < xR the pairwise different elements of X , y1 < · · · < yS those of Y
and wr,s the relative frequency of (xr, ys) in the full sample. We then estimate ϕ
by

ϕ̂ := arg max
ϕ∈Θ

L(ϕ), (6)

with

Θ :=
{
ϕ := (ϕx)x∈X : ϕ satisfy (3) with X replaced by X and ϕx is c.u.s.c.

}
.

One shows that ϕ̂ is indeed unique and that L(ϕ̂) = supϕ∈Θ1
l(ϕ)−1. Furthermore,

for some 1 = s1 ≤ · · · ≤ sR ≤ S and 1 ≤ S1 ≤ · · · ≤ SR = S defined from
the geometry of D, one proves that for 1 ≤ r ≤ R, ϕ̂xr is linear on [ys, ys+1],
sr ≤ s < Sr, and ϕ̂xr ≡ −∞ outside of these intervals, see [7].

Finite Dimensional Constrained Optimization Problem

Define P := ∪Rr=1 ∪Srs=sr {(r, s)}, RP := {(ϕr,s)(r,s)∈P : ϕr,s ∈ R} and KP to be the

cone in RP of feasible elements ϕ := (ϕr,s)(r,s)∈P such that

ϕr,s+1 − ϕr,s
ys+1 − ys

≤ ϕr,s − ϕr,s−1

ys − ys−1
, (7)

ϕr,s+1 − ϕr,s
ys+1 − ys

≤ ϕr+1,s+1 − ϕr+1,s

ys+1 − ys
, (8)

where (7) holds for sr < s < Sr, 1 ≤ r ≤ R and expresses the concavity constraint,
and where (8) holds for sr ∨ sr+1 ≤ s < Sr ∧ Sr+1, 1 ≤ r < R, and stands for con-
straint (3). Then, problem (6) is identified with the finite dimensional constrained
optimization problem

arg max
ϕ∈KP

L(ϕ), (9)

whose solution ϕ̂ is unique and so that L(ϕ̂) = L(ϕ̂) = supϕ∈Θ1
l(ϕ)− 1, with the

target functional L being essentially a parametric version of (5).

An active set algorithm for ϕ̂

Active set methods are particularly well suited for optimization problems with
inequality constraints on the parameter space. In [1] for example, an active set
strategy was employed to estimate shape-constrained density ratios, including log-
concave densities in the one-sample case. In our ongoing work [7], we extend this
approach and build a specific algorithm to solve (9). The idea of the method reads
as follows:

1. Start with a feasible ϕ ∈ KP such that L(ϕ) > −∞ and go to 2.
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2. Define the set of deactivated equality constraints of ϕ as

C(ϕ) :=
{

(r, s, y) ∈ P × {y} :
ϕr,s+1 − ϕr,s
ys+1 − ys

6= ϕr,s − ϕr,s−1

ys − ys−1

}
∪
{

(r, s, x) ∈ P × {x} :
ϕr,s+1 − ϕr,s
ys+1 − ys

6= ϕr+1,s+1 − ϕr+1,s

ys+1 − ys

}
.

Check if ϕ is locally optimal, in the sense that

L(ϕ) ≥ L(ψ), for all ψ ∈ RP such that C(ψ) ⊂ C(ϕ).

To this end, define an element ϕnew as the result of a Newton step in a linear
subspace of RP determined by ϕ and compute the directional derivative δ of
L at ϕ along ϕnew −ϕ.

If δ > 0, replace ϕ by a convex combination of ϕ and ϕnew that makes it
feasible in KP and restart with 2.

Otherwise, if δ ≤ 0, then ϕ is locally optimal and one proceeds to 3.

Each repetition of step 2. has the effect of strictly improving the likelihood
score and possibly activating some constraints.

3. Suppose that ϕ ∈ KP is locally optimal and check whether it is also globally
optimal, in the sense that ϕ = ϕ̂.

For this purpose, compute the directional derivative δε of L at ϕ in the direc-
tion of some simple elements ε which have the specificity to deactivate at least
one constraint of ϕ. Only finitely many of these specific elements exist and
the search for ε such that δε > 0 is done efficiently via dynamic programming.

If such an ε exists, replace ϕ by ϕ+ tε for some t > 0 which makes it feasible
in KP and strictly increases the likelihood score. One then restarts with 2.

Otherwise, if δε ≤ 0 for all ε, return ϕ̂ := ϕ.

In reality, the inequalities employed in the algorithm are treated up to some precision
δo > 0, so that after finitely many iterations, the procedure stops and provides an
approximate solution ϕ̂ to (9). Using linear interpolation, one constructs ϕ̂ ∈ Θ1,
yielding an approximate maximizer of (4).

Acknowledgements: This work was supported by Swiss National Science Foun-
dation.
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From theory to application:
a spatio-temporal modelling perspective
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Abstract: Gaussian random fields with Matérn covariances are the most popular
modelling tools in Spatial Statistics. We draw on examples of recent advances in
related theory as well as application. For the former, we look at ambit fields, a
relatively new class of spatio-temporal random fields which were introduced for
turbulence modelling. Since these are expressed as stochastic integrals over Lévy
bases, they allow for non-Gaussianity. By looking at two fundamental subclasses,
the spatio-temporal Ornstein-Uhlenbeck (STOU) and the mixed STOU process, we
show how one can modify the spatio-temporal correlation of the general ambit field
to model different phenomena. On the application side, we use a spatio-temporal
random field to model malaria seasonality. The connection between the Matérn
covariance and a linear fractional stochastic partial differential equation speeds up
inferences and prediction.

Keywords: Spatio-temporal Statistics, random fields, statistical modelling.

AMS subject classification: 62M30, 62M40, 62M86, 62F10, 62F12, 62F15.

1 Introduction

Data are being collected at higher frequencies and spatial resolutions. To ad-
dress their complexity, researchers have been developing spatio-temporal models
and methodologies. These use the characteristics of each location-time observation
such as the amount of rainfall as well as the correlation between the observations
[4, 6]. The latter arises by virtue of close proximity in space-time and can represent
factors which we do not have data for; thus mitigating the problem with omitted
variables in complex phenomena.
The most popular ingredient of these models is the spatial Gaussian Matérn random
field (RF).

∗Corresponding author: michele.nguyen@bdi.ox.ac.uk
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Definition 1 (Matérn spatial covariance).
A Gaussian Matérn RF {Y (x)}x∈Rd has a covariance of the form:

Cov(Y (x), Y (x + h)) =
21−νφ2

(4π)
d
2 Γ(ν + d

2 )κ2ν
(κ||h||)νKν(κ||h||),

where d ∈ N, h ∈ Rd and Kν denotes the modified Bessel function of second kind
and order ν > 0. The parameters φ > 0, ν and κ > 0 can be interpreted as variance,
smoothness and decay parameters respectively.

Y (x) has been shown to be a solution of a linear fractional stochastic partial differ-
ential equation (SPDE) [5]:

(κ2 −4)
α
2 Y (x) = φW (x),

where α = ν+d/2, 4 =
∑d
i=1 δ

2/δx2
i is the Laplace operator and W (x) is Gaussian

white noise. Through the Green’s function of the differential operator, Y (x) can
expressed as a stochastic integral:

Y (x) =

∫
Rd
k(x, ξ)W (dξ),

where k(x, ξ) =
21−α−d2 φ

(4π)
d
2 Γ(α2 )κα−d

(κ||x− ξ||)
α−d

2 Kα−d
2

(κ||x− ξ||).

Recently, there has been renewed interest in viewing SPDE solutions as RFs and
investigating their probabilistic as well as statistical properties. Of special mention
is the work on ambit fields, a family of non-Gaussian spatio-temporal RFs. These
were introduced for turbulence modelling and have stochastic integrals as their core
components [2]. For further details on the connection between ambit fields and
SPDEs, interested readers are referred to [1].
While research on spatio-temporal ambit fields is on the rise, most work is still
concentrated on the purely temporal setting. In the second section, we hope to mo-
tivate further study on spatial and spatio-temporal ambit fields by introducing two
fundamental subclasses: the spatio-temporal Ornstein-Uhlenbeck process (STOU)
and the mixed spatio-temporal Ornstein-Uhlenbeck (MSTOU) process [10, 11]. By
focusing on shape of the integration set and the Lévy basis, we show that these
ambit fields are able to model clusters in space-time as well as bridge between
short-range and long-range dependence.
In addition to paving the way to more interesting spatio-temporal models, the link
between Gaussian Matérn RFs and SPDEs has been used to make inference and
prediction with such models computationally feasible [8]. We illustrate this in the
third section by fitting a log-linear spatio-temporal regression model to the monthly
proportions of malaria cases in Madagascar. Malaria is a disease caused by the
Plasmodium parasite and remains a major cause of child mortality in sub-Saharan
Africa [13]. Understanding location-specific seasonal characteristics is useful for
maximising the impact of interventions.
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2 Spatio-temporal Ornstein-Uhlenbeck processes

Lévy-driven spatio-temporal Ornstein-Uhlenbeck (STOU) processes form one of the
first few subclasses of ambit fields introduced in [3]. The classic, non-mixed process
has temporal exponential correlations which are characteristic of OU processes.
More generally, the construction can be seen as an extension of a stationary OU
process in time where the Lévy basis allows for non-Gaussianity and the ambit set
aids the modelling in space-time.

Definition 2 (MSTOU and STOU processes).
Let a random field Y = {Yt(x)}x∈Rd,t∈R be defined as follows:

Yt(x) =

∫ ∞
0

∫
At(x)

exp(−λ(t− s))L(dξ,ds,dλ). (1)

where L is a Lévy basis over the product space of space-time and the parameter
space of λ. If λ is associated with a probability density other than the Dirac delta
measure, we call Y a MSTOU process. Otherwise, Y is a STOU process.
The ambit set, At(x) ⊂ Rd × R, can be interpreted as a causality cone in physics
and is restricted to be translation invariant as well as non-anticipative. We also
require that As(x) ⊂ At(x),∀s < t.

The shape of At(x) determines the kind of non-separable spatio-temporal covariance
we can model. Although STOU processes have exponential temporal correlation and
hence short-range (SR) dependence in time, MSTOU process can exhibit long-range
(LR) temporal dependence for various choices of the probability density of λ. We
illustrate this through the following example:

Example 1. Let E be an arbitrary bounded subset of space-time, then L is a
spatio-temporal compound Poisson Lévy basis if:

L(E) =

∞∑
k=−∞

Jk1{(Γk,λk)∈E}.

Here, the jump sizes Jk
i.i.d.∼ Gamma(αZ , βZ) for k ∈ N,

{
Γk =

(
Γ

(1)
k ,Γ

(2)
k

)}
k∈N

de-

note the spatio-temporal jump locations of a Poisson process N = (Nt(x))(x,t)∈Rd×R
with intensity µ, and {λk}k∈N is an independent, identically distributed (i.i.d.) se-
quence of decay rates with probability density function f . The three components,
{Jk}k∈N, N and {λk}k∈N are independent of each other.
Suppose that d = 1 so that x ∈ R and At(x) = {(ξ, s) : s ≤ t, |x− ξ| ≤ c|t− s|} for
some c > 0. If f(λ) is a Gamma(α, β) density where α > d+ 1 = 2 and β > 0, the
spatio-temporal covariance Cov(Yt(x), Yt+dt(x+ dx)) is equal to:

Var(L′)

∫ ∞
0

∫
At(x)∩At+dt (x+dx)

exp(−2λ(t− s)− λdt)dξdsf(λ)dλ,

=
cβα Var(L′)

2(β + max(|dt|, |dx|/c))α−2(α− 2)(α− 1)
.
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Figure 1: Heat plots of: (a) the MSTOU process and (b) the corresponding STOU
process with rate parameter

∫∞
0
λf(λ)dλ = α/β = 3. The black dots denote the

positions of the jumps in space-time.
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This has the desirable property known as ‘non-separability’ because the temporal
and spatial distances interact. In general, since the covariance depends on the ambit
sets’ intersections, their shapes determine the functional form.
To see that the MSTOU process can model both LR and SR temporal dependence,
we integrate the temporal covariance over τ = dt:∫ ∞

0

Cov(Yt(x), Yt+τ (x))dτ =
cβ3 Var(L′)

2(α− 2)(α− 1)(α− 3)
,

for α > 3. So, the process has temporal LR dependence for 2 < α ≤ 3 when the
integral diverges but SR dependence otherwise.
In Figure 1, we show heat plots of realisations from a MSTOU and STOU process
with the same ambit set and underlying Poisson process. Just as how a temporal
OU process is used to model financial volatility clusters in time, the MSTOU and
STOU processes can be used to model clusters in space-time. While the field values
decay at the same rate for the STOU process, the values decay at varying rates for
each jump in the MSTOU process. Its lower rate parameters lead to larger clusters
which is consistent with its long memory.

3 Modelling malaria seasonality

While the Gaussian Matérn RF and its stochastic integral representation can be
extended to create more interesting spatio-temporal models like ambit fields, the
added complexity in terms of correlation structures and non-Gaussianity make sta-
tistical inference more tedious. Currently, only moment-based procedures have been
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Figure 2: (a) Estimated start and (b) peak months of the first malaria transmission
season in Madagascar. These are preliminary results based on median proportion
estimates and the white regions on the island denote the areas where the entropy
is not well-defined.
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(b) Peak of first season
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implemented to estimate the parameters of STOU and MSTOU processes [10, 11].
On the other hand, under the assumption of Gaussianity, the link between Gaussian
Markov RFs and their approximate SPDE solutions has been recently used to alle-
viate a longstanding problem faced when conducting likelihood-based inference for
spatial models: computing the inverse and log-determinants of a large covariance
matrix. The method, Integrated Nested Laplace Approximation (INLA), which is
set up in a Bayesian framework, has made convenient through the R package, R-
INLA [4].
With the newfound computational capability, spatio-temporal modelling can be
conducted for larger data sets and wider application scenarios. We illustrate this
by modelling malaria seasonality in Madagascar. In particular, we apply the fol-
lowing model to monthly case records from 2669 health facilities between 2013 and
2016 [9]:

log(pi,j) = XT
ijβ + φij + εij . (2)

Here, pi,j represents the fraction of cases in month i at location j, Xij is a m-
dimensional covariate vector including an intercept, β ∈ Rm is the corresponding
parameter vector and ε ∼ N(0, σ2

e) denotes i.i.d. noise. The spatio-temporal Gaus-
sian field φ is constructed such that:

φi,j =

{
ξ1j for i = 1,

aφi−1,j + ξi,j for i = 2, . . . , 12,
(3)

|a| < 1 and ξi,j correspond to zero-mean Gaussian innovations which are temporally
independent but spatially coloured with a Matérn covariance.
With INLA, backwards regression to select covariates such as lagged monthly tem-
perature and rainfall is computationally feasible. Figure 2 shows the start and peak
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of the first transmission season as identified via least-squares fits of the median
estimated monthly case proportions to rescaled von Mises densities. The latter is
used to ensure continuity of the seasonal pattern between December and January
and is also convenient for identifying seasonal peaks since these correspond to the
mean parameters. The estimated peaks in Figure 2(b) tie in with current literature
which state that most areas experience the peak around April while the eastern
coast experiences it earlier around February [7].
By defining the transmission season to be the period when the monthly proportions
exceed 1/12, we can also identify its start, end and length in a consistent manner.
This allows us to make fair comparisons across the study region. In practice, the
estimated start months of the transmission season, as shown in Figure 2(a), are also
useful for the planning of indoor residual spraying campaigns since these typically
need to be completed by then.

4 Conclusion and further work

In this paper, we used the examples of ambit fields and malaria seasonality to high-
light advances in spatio-temporal modelling on both the theory and the practical
fronts. The link between random fields and stochastic partial differential equations
have proved useful in both cases.
Although ambit fields have been successfully applied to turbulence and finance mod-
elling, there is need for continued research on its properties and spatio-temporal
applications. In the context of likelihood-based inference, there has been re-
cent progress for other, simpler non-Gaussian spatial models. While the associ-
ated R package, LANG, is still under development, the Monte Carlo expectation-
maximization algorithm for non-Gaussian spatial Matérn fields presents an exciting
way forward [5, 12].
Similarly, since the seasonality results in Section 3 are preliminary, additional analy-
sis is being done with the realisations of the fitted model so as to obtain uncertainty
measures. As researchers develop methodologies to study the increasing wealth of
spatiotemporal data, it is hoped that we will vastly improve our understanding of
the world we live in.
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Pseudo-observations and a variance inequality
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Abstract: A method based on jack-knife pseudo-observations has been used
for regression analysis when outcomes may be missing. This pseudo-observation
method has been shown to produce a variance of the regression parameter estimate
that is not consistently estimated by standard variance estimators. The asymptotic
bias of the standard variance estimators has been shown to be upwards in some
specific cases. In this paper, the upwards bias is established in a somewhat broader
generality.
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1 Introduction

The pseudo-observation method is a regression method that can be used when some
outcome values are missing. It was suggested by [2] and it has mainly been studied in
a survival analysis context where outcomes such as survival past some time point or
death of a certain cause before a certain time may be missing due to right censoring.
The method is based on substituting the outcome variable for a variable of pseudo-

observations, which will be the jack-knife pseudo-values, θ̂n,i = nθ̂n − (n − 1)θ̂
(i)
n

of an estimator of the expectation of the outcome V , θ = E(V ). Here, θ̂n is the

overall estimate of θ based on a sample of size n and θ̂
(i)
n is the estimate obtained by

the same estimator on the same sample with the ith observation left out. Suppose
the regression model tells us that a regression parameter β0 ∈ Rq exists such that
E(V | Z) = µ(β0;Z) for some given function µ and covariates Z. The pseudo-
observation method now involves solving an estimating equation of the type

1

n

n∑
i=1

A(β;Zi)(θ̂n,i − µ(β;Zi)) = 0 (1)

to obtain a regression parameter estimate β̂n where A is a given q-dimensional vector
function. The form of (1) covers many typical estimating equations except for the
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fact that outcomes Vi have been substituted by pseudo-observations θ̂n,i. Originally,
[2] suggested basing variance estimation on the Huber–White type estimator

V̂ar(β̂n)n,HW =
1

n
M̂−1
n Σ̂n,HW(M̂T

n )−1, (2)

where M̂n = n−1
∑n
i=1A(β̂n;Zi)∂/∂βµ(β̂n;Zi) and

Σ̂n,HW =
1

n

n∑
i=1

A(β̂n;Zi)A(β̂n;Zi)
T(θ̂n,i − µ(β̂n;Zi))

2. (3)

Building on results of [3], the results of [4] indicate that this approach to vari-

ance estimation is generally inappropriate. In that paper, the estimate θ̂n is seen

as the product of applying a functional to the empirical distribution, θ̂n = φ(Fn)
for some functional φ, where Fn is, essentially, the empirical distribution of the
n observations X1, . . . , Xn that the estimator is based on. The first and second
order influence functions associated with the functional φ as an estimator are de-
noted φ̇ and φ̈. The result by [4], based on various assumptions, states that the

asymptotic variance of n1/2(β̂n − β0) will take the form M−1Σ(MT)−1. Here,

M = E(A(β0;Z)∂/∂βµ(β0;Z)) is consistently estimated by M̂n from before under
the implied assumptions. The inner part is of the form Σ = Var(h0(X,Z) +h1(X))
where

h0(x, z) = A(β0; z)(θ + φ̇(x)− µ(β0; z)) (4)

and
h1(x) = E(A(β0;Z)φ̈(X,x)). (5)

Because the pseudo-observation θ̂n,i approximates θ + φ̇(Xi) in this setting, it can

be seen that Σ̂n,HW estimates Var(h0(X,Z)) consistently but is not generally esti-
mating Σ consistently.

In a survival and competing risks setting where θ̂n corresponds to the Kaplan–Meier
or Aalen–Johansen estimators, the papers of [3] and [5] reveal that Σ̂n,HW and so

V̂ar(β̂n)n,HW is upwards biased. In this paper, this result will be established in a
more general setting by following a similar approach and proving similar results as
in [3] and [5].

2 Main result

The setting that we will consider is a survival setting and is a special case of the
setting of [6]. Specifically, we consider an underlying event time T > 0 and an
underlying event type D ∈ {1, . . . , d} and a censoring time C > 0. The exit time

T̃ = T ∧ C and the exit type D̃ = D1(T ≤ C) are observed in addition to the
covariates Z. We will be working under the completely independent censoring
assumption C ⊥⊥ (T,D,Z). Modelling n observations, (X1, Z1), . . . , (Xn, Zn) are

independent replications of (X,Z) where X = (T̃ , D̃). The censoring distribution
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is captured by the function G given by G(s) = P(C ≥ s) = Ps−
0 (1 − Λ(du))

and this can be estimated by a Kaplan–Meier style estimate Ĝn(s) = Ps−
0 (1 −

Λ̂n(du)) where Λ̂n(s) =
∫ s

0
K̂n(u)−1Ĥn,0(du) where K̂n(s) is the empirical version

of K(s) = P(T̃ > s) + P(T̃ = s, D̃ = 0) and Ĥn,0(s) is the empirical version of

H0(s) = P(T̃ ≤ s, D̃ = 0). It can be seen that Ĝn(s) is consistently estimating G(s)
under the independent censoring assumption.
We will consider a certain time point t > 0 with P(T̃ > t) > 0 of particular interest.
The outcome V that we consider should be a real-valued random variable that is
available at time t in the sense that it is a function of (T ∧ t,D1(T ≤ t)). This
includes the examples of survival past t, V = 1(T > t), death of a certain cause
before time t, V = 1(T ≤ t,D = j), life time up to time t, V = T ∧ t, life time
lost due to a certain cause up to time t, V = (t− T ∧ t)1(D = j), and more. Such
outcomes are observed when C ≥ T ∧ t. This means we can use the estimator

θ̂n =
1

n

n∑
i=1

V 1(C ≥ T ∧ t)
Ĝn(T̃ ∧ t)

(6)

to estimate θ = E(V ) consistently under the independent censoring assumption.
Among other examples, this type of estimator covers the Kaplan–Meier estimator
and the Aalen–Johansen estimator in a competing risks setting. Seeing this estima-
tor as a functional φ, the influence function of this estimator is derived by [6] under
certain assumptions and can be expressed as

φ̇(x) =
v(x)

G(t̃ ∧ t)
− θ

+

∫ ∫ t−

0

v(x∗)1(t̃∗ > u)

G(t̃∗ ∧ t)
1

1−∆Λ(u)

1

K(u)
Mx,0(du)F (dx∗)

(7)

where Mx,0(s) = Nx,0(s) −
∫ s

0
Yx(u)Λ(du) with Nx,0(s) = 1(t̃ ≤ s, d̃ = 0) and

Yx(s) = 1(t̃ > s) + 1(t̃ = s, d̃ = 0) and F is the distribution of X = (T̃ , D̃) with

x and x∗ denoting (t̃, d̃) and (t̃∗, d̃∗) respectively. Splitting K(u) into the product
S(u)G(u) where S(u) = P(T > u), a change in the order of integration reveals

φ̇(x) =
v(x)

G(t̃ ∧ t)
− θ +

∫ t−

0

E(V | T > u)
1

G(u+)
Mx,0(du) (8)

since S(u)−1
∫
v(x∗)1(t̃∗ > u)G(t̃∗ ∧ t)−1F (dx∗) = S(u)−1 E(V 1(C ≥ T ∧ t)1(T̃ >

u)G(T̃ ∧ t)−1) = E(V | T > u) for u < t and G(u+) = (1 − ∆Λ(u))G(u). We

may then use the identity of 1(C ≥ s)G(s)−1 − 1 = −
∫ s−

0
G(u+)−1MC(du) where

MC(s) = NC(s)− Λ(C ∧ s) with NC(s) = 1(C ≤ s) to obtain the expression

h0(X,Z) = A(β0;Z)
(
V − E(V | Z)−

∫ t−

0

V − E(V | T > u)

G(u+)
MX,0(du)

)
. (9)

An expression of the second order derivative of the functional φ is given in the
supplement of [6]. Based on this, the expression

E(φ̈(X,x) | Z) =

∫ t−

0

E(V | T > u,Z)− E(V | T > u)

G(u+)

S(u | Z)

S(u)
Mx,0(du) (10)
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where S(u | z) = P(T > u | Z = z) can be obtained in a similar manner as laid out
above. We let

W (u) = E
(
A(β0;Z)

(
E(V | T > u,Z)− E(V | T > u)

)S(u | Z)

S(u)

)
(11)

to obtain

h1(x) =

∫ t−

0

W (u)
1

G(u+)
Mx,0(du). (12)

The main result can be stated as follows.

Theorem 1. We have

Σ = Var(h0(X,Z))−Var(h1(X)) (13)

such that Σ < Var(h0(X,Z)) unless Var(h1(X)) = 0. In addition,

Var(h1(X)) =

∫ t−

0

W (u)W (u)TS(u)
1

G(u+)
Λ(du) (14)

such that Var(h1(X)) = 0 if and only if W (u) = 0 for Λ-almost all u ∈ (0, t).

Proof. This follows from martingale properties of MC which hold even in the condi-
tional distribution given (T,D,Z). In particular, M2

C − [MC ] is a martingale where
[MC ] is the optional variation process of MC which is given by [MC ](s) =

∫ s
0

(1 −
∆Λ(u))NC(du) −

∫ s
0

∆Λ(u)MC(du) and has expectation E([MC ](s) | T,D,Z) =∫ s
0
G(u+)Λ(du). The process given by MX,0(s) =

∫ s
0

1(T > u)MC(du) is then
similarly a martingale in the conditional distribution, as is also the case with the
vector-valued processes given by M1(s) =

∫ s
0
W (u)G(u+)−1MX,0(du) and M2(s) =∫ s

0
A(β0;Z)(V −E(V |T > u))G(u+)−1MX,0(du). Now, M1(s)M1(s)T− [M1](s) de-

fines a martingale in the conditional distribution and in particular M1(t−)M1(t−)T

and [M1](t−) will have the same conditional expectation which will result in

E(h1(X)h1(X)T | T,D,Z) =

∫ t−

0

W (u)W (u)T
1(T > u)

G(u+)
Λ(du) (15)

by properties of the optional variation process as found in Chapter 2 of [1]. Taking
expectation reveals (14). We have Cov(h0(X,Z), h1(X)) = −E(M2(t−)M1(t−)T)
since E(MX,0(s) | T,D,Z) = 0. By the same argument as above, we find

E(M2(t−)M1(t−)T | T,D,Z)

=

∫ t−

0

A(β0;Z)(V − E(V | T > u))W (u)T
1(T > u)

G(u+)
Λ(du).

(16)

Here, E((V − E(V | T > u))1(T > u) | Z) = (E(V | T > u,Z) − E(V | T >

u))S(u | Z) such that E(M2(t−)M1(t−)T) =
∫ t−

0
W (u)W (u)TS(u)G(u+)−1Λ(du)

and this establishes Cov(h0(X,Z), h1(X)) = −Var(h1(X)) and thus (13).
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3 Conclusion

The result presented here generalizes the expression given in [5] for the outcome V =
1(T ≤ t,D = 1) and pseudo-observations based on the Aalen–Johansen estimator.
The definition of W is slightly different here in comparison to that paper.
It is of interest to find a consistent variance estimate. In [4], a suggestion on
this matter can be found. This suggestion is based on a plug-in version of Σ =
Var(h0(X,Z) + h1(X)).
Looking at the expression of Var(h1(X)), it seems the bias will be limited unless
there is a close connection between V and Z simultaneously with a large censoring
hazard. For that reason, this bias may be of minor importance in many applications.
Also, the consequence of using the standard Huber–White type variance estimate
will be a conservative rather than an invalid analysis according to Theorem 1.
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is supported by the Novo Nordisk Foundation, grant NNF17OC0028276.
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Abstract: This paper provides some guidelines for the implementation and effec-
tive use of the mechanism of change-point analysis for the detection of epidemics,
and discusses some of the statistical issues involved in the evaluation and optimal
selection among change-point analysis-based approaches for the very early and ac-
curate outbreak detection. The empirical comparative study provides evidence that
statistical methods based on change-point analysis have several appealing properties
compared to the current practice for the detection of epidemics.
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1 Introduction

In the modern world, the timely detection of epidemics has been recognized as an
extremely important problem of biosurveillance (see [4] and references therein). The
current approach to influenza-like illness (ILI rate) surveillance (implemented by the
European Centre for Disease Prevention and Control-ECDC and Centers for Disease
Control and Prevention-CDC) is based on Serfling’s cyclic regression method [5] by
which epidemics are detected and reported when morbidity/mortality exceeds the
epidemic threshold. This typical approach suffers from several shortcomings, such as
the need for non-epidemic data to model the baseline distribution, and the fact that
observations are treated not only as independent but also as identically distributed.
Although the second issue can be overcome by properly adjusted modeling of the
time series data, the first issue is a fundamental obstacle toward the development
of an automated surveillance system for influenza.
Towards this end, this paper aims at the implementation and evaluation of cutting-
edge change-point analysis-based methods for detecting changes in location of uni-
variate ILI rate data. The main tool in this methodology is detection of unusual
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trends, like the beginning of an unusual trend that marks a switch from a control
state to an epidemic state. Therefore, a beginning of an epidemic trend is a change
point whose timely detection will predict occurrence of a new epidemic. The rest
of this paper is organized as follows. In Section 2, the statistical framework is in-
troduced. In Section 3, an empirical comparative study is performed. Finally, in
Section 4, some concluding remarks are made.

2 Phase I Distribution-Free Change-Point Analy-
sis

Several approaches for detecting outbreaks of infectious diseases in the literature
are directly inspired by, or related to, methods of Statistical Process Control (SPC).
In an epidemiological surveillance problem, the underlying process distribution is
not normal and usually unknown. Hence statistical properties of commonly used
SPC charts could be highly affected. In this paper, we implement important aspects
of univariate distribution-free Phase I change-point analysis and apply some of the
recent developments in this area, in order to develop a novel SPC charting method
that works best for monitoring and outbreak detection processes.
Let xi represent the ith observation, i = 1, . . . ,m, collected from the distribution
of a quality characteristic, either continuous or discrete, X. When the process is in-
control (IC), these observations are assumed to be independent with an unknown
but common cumulative distribution function (c.d.f.) F0(x), whereas the out-of-
control (OC) state can be described by a multiple change-point model, that is
F0(x) if 0 < i ≤ τ1, F1(x) if τ1 < i ≤ τ2, . . . , Fk(x) if τk < i ≤ m, where
0 < τ1 < τ2 < . . . < τk < m denote k change points and Fr(∗), r = 0, . . . , k, are
unknown c.d.f. which, at one or several times, may shift in position. Note here that
the shift times τi are also assumed to be unknown. This Phase I analysis procedure
provides a statistical test for verifying the hypothesis system H0: the process was
IC (k = 0) vs. H1: the process was OC (k > 0) and identifying the time of the
changes when the hypothesis of an IC process is rejected. This hypothesis testing
system (performed in Phase I) requires the specification of a nominal false alarm
probability (FAP). Following the recursive segmentation and permutation (RS/P)
approach of Capizzi and Masarotto in [1], choosing an acceptable FAP value, say
α, we test the stability over time of the level parameter. The following steps need
to be executed for level-changes detection, i.e., detection of single or multiple level
shifts.
Let us consider the problem of testing the null hypothesis that the process was IC
against the alternative hypothesis that the process mean experienced an unknown
number of step shifts. In such a case, a set of test (control) statistics is needed
for detecting 1, 2, . . . ,K step shifts with K denoting the maximum number of hy-
pothetical change points. The mean values µ0, . . . , µk, and the change points are
assumed to be unknown. Further, defining τ0 = 0 and τk+1 = m, it is also as-
sumed that τr− τr−1 ≥ lMIN , r = 1, . . . , k+ 1, where lMIN is a (user pre-specified)
constant giving the minimum number of successive observations allowed between
two change points. For a sequence of individual observations, the control statis-
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tic and the possible change points are computed using a simple forward recursive
segmentation approach. The algorithm starts with k = 0 and then proceeds in K
successive stages. At the beginning of stage k, the interval [1,m] is partitioned into
k subintervals, each having a length greater or equal to lMIN . At stage k, one of
these subintervals is split, adding a new potential change point. The new change
point is selected maximizing

k+1∑
i=1

(τ̂i − τ̂i−1)(x̄(τ̂i−1, τ̂i)− x̄om)2 (1)

conditionally on the results of the previous stages. Here x̄om represents the overall

mean (om) of observations, x̄(α, b) = 1
b−α

b∑
i=α+1

xi, and 0 = τ̂0 < τ̂1 < · · · <

τ̂k < τ̂k+1 = m are the boundaries of the new partition. The control statistic Tk,
k = 1, . . . ,K is equal to the attained maximum value of Eq. (1). Therefore, given
a test statistic, its p-value can be calculated, as the proportion of permutations
under which the statistic value exceeds or is equal to the statistic computed from
the original sample of observations. Choosing an acceptable FAP, say α, then, for
p-value< α, the null hypothesis that the process was IC is rejected.

3 Comparative Study

This paper focuses on the study of weekly ILI rate data (provided from the Hellenic
Centre for Disease Control and Prevention) for Greece, between September 29, 2014
(week40/2014) and October 2, 2016 (week39/2016), which were used for analysis
purposes. Here, we perform the RS/P approach for both periods under study (1st

period: week40/2014-week39/2015, 2nd period: week40/2015-week39/2016) execut-
ing L = 100000 permutations with K = max

(
3,min

(
50,
[
m
15

]))
and lMIN = 5. Our

procedure signals possible changes of the mean (p-value< 0.001 for a change in
level). The extracted signaled start (sw) and end weeks (ew) of the epidemics were
sw01-ew14/2015 and sw01-ew08/2016.
In our study, the ability of RS/P method to detect the true (and correct amount of)
change-points is tested through benchmarking. Therefore, RS/P derived change-
points are compared with those derived after executing 1. the standard CDC
and ECDC flu detection algorithm (Serfling’s model) [5]

M11: X(t) = α0 + α1t+ γ1 cos(
2πt

m
) + δ1 sin(

2πt

m
) + ε(t), (2)

where X(t) are the observed time series values (weekly ILI rate), ε(t) are centered
zero-mean random variables with variance σ2, m denotes the number of observations
within one year, and model coefficients are estimated by least squares method, 2.
an extended Serfling’s model presented by Parpoula et al. in [4]

M23: X(t) = α0 + α1t+ α2t
2 + γ1 cos(

2πt

m
) + δ1 sin(

2πt

m
)
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+ γ2 cos(
4πt

m
) + δ2 sin(

4πt

m
) + γ3 cos(

8πt

m
) + δ3 sin(

8πt

m
) + ε(t), (3)

3. a mixed model with a linear trend, 12-month seasonal periodicity,
Auto-Regressive Moving Average (ARMA) terms, that is ARMA(2,1),
and the minimum temperature (mintemp) as a random meteorological
covariate presented by Kalligeris et al. in [3]

MXM11: X(t) = α0 + α1t+ γ1 cos(
2πt

m
) + δ1 sin(

2πt

m
)

+ φ1xt−1 + φ2xt−2 + εt + λ1εt−1 + ω1mintemp, (4)

and 4. Segment Neighbourhood (SegNeigh) algorithm which uses an opti-
mization step that searches over all previous change-point locations and picks the
one that gives the optimal segmentation up to time t, presented by Kalligeris et al.
in [2].

As aforementioned, the current approach to influenza surveillance is based on Ser-
fling’s cyclic regression model (M11). Parpoula et al. in [4], developed extended
Serfling-type periodic regressions models, and through an exhaustive search process
(using ANOVA comparisons and AIC, BIC information criteria) the best fitting
model M23 was selected. The aforementioned procedure allowed Parpoula et al.
in [4] to extract the signaled start and end weeks of the epidemics, i.e., sw01-
ew13/2015, sw01-ew08/2016. It is worth to be noted that the signaled start and
end weeks were found to be identical considering either Serfling’s model (M11) or
extended Serfling’s model (M23). Then, the above results motivated Kalligeris et
al. in [3] to incorporate ARMA terms and random meteorological covariates in the
model structure, for identifying the epidemics (sw01-ew12/2015, sw05-ew08/2016).
Further, Kalligeris et al. in [2] established that the change-point detection analysis
(SegNeigh algorithm) in conjunction with periodic-type ARMA modeling with co-
variates is capable of modeling time series data with typical and non-typical parts
and identifying the beginning and end of the extreme periods that occurred (sw01-
ew12/2015, sw01-ew08/2016).

Therefore, we then examine the ability of the RS/P, MXM11 and SegNeigh ap-
proaches to detect the true change-points compared to the standard and extended
CDC and ECDC flu detection algorithm (models M11 & M23). The diagnos-
tic performance of a test to discriminate between two groups (here, epidemic from
non-epidemic) is typically evaluated using Receiver Operating Characteristic (ROC)
curve analysis, and its related statistics/metrics (Accuracy-ACC, Sensitivity-SENS,
Specificity-SPEC, Area Under the ROC curve-AUC). Hence we estimated these met-
rics along with their 95% Confidence Interval (CI) (exact Clopper-Pearson CIs for
ACC, SENS and SPEC, exact binomial CI for each derived AUC) for each method
(as shown in Table 1). Table 1 indicates that RS/P and SegNeigh approaches
(higher ACC, SENS and AUC values) outperform MXM11, and seem to detect
successfully the true change-points compared to the standard approach to influenza
surveillance.
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Table 1: Metrics for RS/P, MXM11 and SegNeigh approaches

Metric RS/P MXM11 SegNeigh

ACC (95% CI) 99.05% (94.81% to 99.98%) 95.24% (89.24% to 98.44%) 99.05% (94.81% to 99.98%)
SENS (95% CI) 100,0% (83,89% to 100,0%) 76,19% (52,83% to 91,78%) 95,24% (76,18% to 99,88%)
SPEC (95% CI) 98,81% (93,54% to 99,97%) 100,0% (95,71% to 100,0%) 100,0% (95,71% to 100,0%)
AUC (95% CI) 0,988 (0,944 to 0,999) 0,881 (0,803 to 0,936) 0,976 (0,926 to 0,996)

4 Concluding Remarks

In this paper, we implemented and evaluated cutting-edge change-point analysis-
based methods for detecting changes in location of univariate ILI rate data. The
empirical comparative study provides evidence that statistical methods based on
change-point analysis have several appealing properties compared to the current
practice for the detection of epidemics. In particular, RS/P and SegNeigh ap-
proaches, both succeeded in early and accurate outbreak detection. Both RS/P
and SegNeigh approaches are advantageous since they can be applied to histori-
cal data without the need for distinguishing between epidemic and non-epidemic
periods in the data, and single or multiple mean shifts can be detected. Further,
RS/P Phase I distribution-free change-point analysis method is able to guarantee
a prescribed false alarm probability without any knowledge about the (in-control)
underlying distribution, whereas SegNeigh algorithm in conjunction with periodic-
type ARMA modeling with covariates is capable of modeling time series data with
typical and non-typical parts.
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Abstract: We build two location-free goodness-of-fit tests for the logistic distri-
bution based on a recent characterization by Hu and Lin [2]. The test statistics are
based on suitable functionals of U -empirical distribution functions. One of them has
the integral structure, the second one is of Kolmogorov type. For every test statis-
tic we describe the large deviation asymptotics under the null-hypothesis. Then we
calculate the local Bahadur efficiency for certain alternatives. Conditions of local
optimality in Bahadur sense are also studied.

Keywords: Bahadur efficiency, logistic distribution, large deviations, goodness-of-
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1 Introduction

This paper is dedicated to certain statistical tests based on characterizations. The
idea of construction of such tests goes back to Yu. V. Linnik’s paper [6]. Here
we consider goodness-of-fit criteria based on the characterization of the logistic
distribution. This characterization belongs to Hu and Lin [2] and can be formulated
as follows.

Theorem. Let X and Y be independent identically distributed random variables
(iid rv’s) with a continuous distribution function (df) L and let E be a standard
exponential rv independent of X and Y . Then X and min(X,Y )+E are identically
distributed iff L belongs to the logistic family of df ’s with arbitrary shift parameter
having the density

l(x+ θ) =
ex+θ

(1 + ex+θ)2
, θ ∈ R.

∗Corresponding author: Ragza@yandex.ru
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Let X1, ..., Xn be iid rv’s with continuous d.f. G(x). Using this characterization, we
can test a composite null hypothesis H0: G is a logistic d.f. with the density l(·+θ)
against the alternative H1 under which H0 is wrong. The papers on goodness-of-fit
problem for logistic family are rather sparse, we can mention only [7] and [13].
Let Fn(t), t ∈ R be the usual empirical df and build the U -statistical empirical df
using the convolution with the exponential rv

Un(t) =

(
n

2

)−1 ∑
1≤i<j≤n

(
1− e(min(Xi,Xj)−t)

)
I {min(Xi, Xj) < t} .

Thus, the tests for the null-hypothesis H0 can be based on the following statistics:

LUn =

∞∫
−∞

(Fn(t)− Un(t)) dFn(t) and KUn = sup
t
|Fn(t)− Un(t)|.

One of the purposes of this paper is the asymptotic comparison of the sequences
statistic which are not asymptotically normal. So we will compare the constructed
statistics using the Bahadur efficiency concept, which is described in detail in [1]
and [8]. The quality of test statistics is measured by the so-called exact slope.
Let formulate the Bahadur fundamental theorem. Assume that the distribution of
the sequence of observations Pθ is determined by the parameter θ ∈ Θ, where Θ is a
parametric set, and we test the null hypothesis H0 : θ ∈ Θ0 ⊂ Θ against alternative
hypothesis H1 : θ ∈ Θ1 = Θ \Θ0.

Bahadur Theorem. Suppose that the sequence of statistics Tn satisfies the fol-
lowing conditions:

1. Tn
Pθ−→ b(θ), θ ∈ Θ1, where −∞ < b(θ) <∞, and

2. lim
n→∞

n−1 ln Pθ(Tn ≥ z) = −k(z) for each θ ∈ Θ0 and any z from an open

interval I, on which function k is continuous and {b(θ), θ ∈ Θ1} ⊂ I.

Then for all θ ∈ Θ1, the exact slope cT (θ) exists and can be calculated as

cT (θ) = 2k(b(θ)).

We denote the Kullback-Leibler ”distance” [1] between the alternative and the null-
hypothesis H0 by K(θ). In our case H0 is composite, hence for any alternative
density f(x, θ) one has

K(θ) = inf
v∈R

∞∫
−∞

ln
f(x, θ)

l(x+ v)
f(x, θ)dx. (1)

The exact slopes always satisfy the inequality cT (θ) ≤ 2K(θ), so the local Bahadur
efficiency of the sequence of statistics Tn is defined as

effT = lim
θ→0

cT (θ)

2K(θ)
. (2)
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Now we present the alternatives fi(x, θ), x ∈ R, i = 1, ..., 3, which we consider in
this paper:

• 1. Scale alternative:

f1(x, θ) =
eθ+xe

θ

(1 + exeθ )2
.

• 2. Hyperbolic cosine alternative:

f2(x, θ) =
Γ(θ + 2)

Γ2( θ2 + 1)

e(x+ θx
2 )

(1 + ex)θ+2

• 3. Sine-alternative from [5] with the density for small θ:

f3(x, θ) = l(x)− 2πθ cos(2πL(x))l(x).

We present the main parts of the Taylor series expansion of Kullback-Leibler infor-
mation as θ → 0 for our alternatives in Table 1.

alternative f1 f2 f3

K(θ) 0.715 · θ2 0.08877 · θ2 9.8696 · θ2

Table 1: Kullback-Leibler information as θ → 0

2 The statistic LUn

Consider the auxiliary function

g(x, y, z) =
(

1− e(min(x,y)−z)
)
I {min(x, y) < z} , x, y, z ∈ R.

The statistic LUn is asymptotically equivalent to the U -statistic of degree 3 with
the centered kernel:

Φ(x, y, z) =
1

2
− 1

3
(g(x, y, z) + g(y, z, x) + g(x, z, y)) . (3)

The projection of this kernel Ψ(t) = E (Φ(X,Y, Z)|Z = t) is

Ψ(t) = −2

3

(
Li2(−et) + t ln(et + 1)− 1

2
ln2(et + 1) +

7et + 1

4(et + 1)

)
,

where Li2(z) = −
∫ z

0
ln(1−t)

t dt, z ∈ C.
The variance of this projection is

∆2 = EΨ2(X) = 0.00195,
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therefore, the kernel Φ(X,Y, Z) is non-degenerate [4]. Using Hoeffding’s Theorem
[4], [3] we get the following result.

Theorem 1.
Under the hypothesis H0, the statistic LUn satisfies the following limit relation as
n→∞: √

nLUn
d−→ N

(
0, 9∆2

)
.

Also the kernel Φ is centered, non-degenerate and bounded, so we apply the results
on large deviations of non-degenerate U–statistics from [9] and obtain the following
theorem:

Theorem 2.
lim
n→∞

n−1 ln P(LUn > t) = h(t),

where the function h(t) is continuous for small t and h(t) ∼ − t2

18∆2 , t→ 0.
Using Bahadur Theorem and Theorem 2, see also [11], we can calculate the local
Bahadur exact slope of statistics LUn : where f(x, θ) is the alternative density.

cLU (θ) ∼

(
∞∫
−∞

Ψ(x)f ′θ(x, 0)dx

)2

θ2

∆2
, as θ → 0, (4)

where f(x, θ) is the alternative density.
We present the exact slopes and the values of local Bahadur efficiency of the statistic
LUn in the table below.

Alternative f1 f2 f3

cLU (θ) 1.1970 · θ2 0.1371 · θ2 14.978 · θ2

effLU 0.837 0.77 0.759

Table 2: Local Bahadur efficiencies of the statistic LUn

3 The statistic KUn

In this section we consider the Kolmogorov type statistic KUn. For a fixed t ∈ R
the expression Fn(t)− Un(t) is the U -statistic with the following kernel depending
on t:

Φ1(X,Y ; t)=
(
1− emin(X,Y )−t)I{min(X,Y ) < t}− 1

2
(I{X < t}+I{Y < t}) .

The projection of the family of kernels Φ1(X,Y ; t) is equal to

Ψ1(s, t) = E (Φ1(X,Y ; t)|Y = s) =
emin(s,t)(1 + e−t)

1 + emin(s,t)
− e−t ln(emin(s,t) + 1)

+
I{s < t}(1− es(1 + 2e−t))

2(1 + es)
− et

2(1 + et)
. (5)
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Now we calculate the variance of this projection under H0:

∆2
1(t) := EXΨ2

1(X, t) =
e3t + 8e2t + 8et − 4(et + 1)(et + 2) ln(et + 1)

4e2t(et + 1)2
,

hence, the family of kernels Φ1(X,Y ; t) is non-degenerate [10] and besides

∆2
1 = sup

t∈R
∆2

1(t) ≈ 0.02322... .

The limit distribution of the statistics KUn is unknown. Using the methods of
([12]), one can show that the U−empirical process

ηn(t) =
√
n (Fn(t)− Un(t)) , t ∈ R;

weakly converges as n → ∞ to a certain Gaussian process η(t) with complicated
covariance. Then the sequence of statistics

√
nKUn converges in distribution to

supt∈R |η(t)|, but we are not able to find this distribution. Hence it is reasonable to
define the critical values for KUn by simulation.
The family of kernels Φ1(X,Y ; t) is centered and bounded in the sense described
in [10]. Applying the large deviation theorem for the supremum of the family of
non-degenerate U–statistics from [10], we get the following result.

Theorem 3. For z > 0

lim
n→∞

n−1 ln P {KUn > z} = w(z) ∼ − z2

8∆2
1

,

where the function w(z) is continuous for sufficiently small z > 0.
Using Theorem 3, we can obtain the following expression for the exact local slope
cKU (θ):

cKU (θ) =

sup
t∈R

(
∞∫
−∞

Ψ1(x; t)f ′θ(x, 0)dx

)2

∆2
1

· θ2. (6)

We calculate the exact slopes of statistic KU and the values of local Bahadur’s
efficiency and collect them in the table below .

alternative f1 f2 f3

cKU (θ) 0.5033 · θ2 0.0509 · θ2 15.801 · θ2

effKU 0.352 0.287 0.800

Table 3: local Bahadur efficiencies of the statistic KUn

Acknowledgements: I would like to express my gratitude to my scientific advisor
Prof. Ya. Yu. Nikitin for interesting problem statement and very useful advice. I
acknowledge the support of the grant SPbGU-DFG 6.65.37.2017.



Goodness-of-fit Tests for Logistic Distribution 95

Bibliography

[1] R. R. Bahadur. Some limit theorems in statistics. SIAM, Philadelphia, 1971.
[2] C. -Y. Hu and G. D. Lin. Characterizations of the logistic and related distri-

butions. Journ. of Mathem. Anal. and Appl., 463(1):79–92, 2018.
[3] W. Hoeffding. A class of statistics with asymptotically normal distribution.

Ann. Math. Statist., 19:293–325, 1948.
[4] V. S. Korolyuk and Y. V. Borovskich. Theory of U -statistics. Springer Science

& Business Media, 2013.
[5] C. Ley and D. Paindaveine. Le Cam optimal tests for symmetry against Ferreira

and Steel’s general skewed distributions. J. Nonparam. Stat., 21(8):943–967,
2009.

[6] Yu. V. Linnik. Linear forms and statistical criteria I, II. Ukrain. Mathem.
J., 5:207–243; 247–290, 1953 (in Russian). Engl. transl. in Selected Transl. in
Mathem. Stat. and Probab., 3:1–90, Amer. Math. Soc., Providence, RI, 1963.
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Abstract: The increasing popularity of the Dirichlet Process Mixture Models
(DPMMs) and other nonparametric Bayesian mixture models can be explained by
the fact that they do not require a specification of the number of clusters in advance.
This short paper presents an overview of the large sample results concerning the
maximum a posteriori (the MAP) partition in the DPMM where the cluster means
have Gaussian distribution and, for each cluster, the observations within the cluster
have Gaussian distribution with a priori specified covariance matrix. The detailed
description of these findings is contained in [2].
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1 The Model

The model we discuss here is based on the Dirichlet Process, which is a probability
distribution on the space of probability measures. It allows to construct a model in
which the distribution of observations is a random mixture from a parametrized fam-
ily of distributions; this model is called Dirichlet Process Mixture Model (DPMM).
For clustering purposes it is more convenient to formulate this model starting from a
probability distribution on possible partitions of the data. This leads to the Chinese
Restaurant Process. Before formulating the definition, it is good to mention the fol-
lowing, culinary metaphor: imagine that the observations’ indices, say 1, 2, . . . , n,
are the customers that enter a restaurant. Customer 1 chooses any table he/she
wants, but every customer that follows joins a table which is already occupied with
a probability proportional to the number of customers sitting there and he chooses
an empty table with probability proportional to some predefined parameter α. In
this way the probability that 7 customers are partitioned as {1, 3}, {2, 4, 6, 7}, {5}
is given by

α

α
· α

1 + α
· 1

2 + α
· 1

3 + α
· α

4 + α
· 2

5 + α
· 3

6 + α
=

α3 · 1! · 3! · 0!

α(α+ 1) . . . (α+ 6)
. (1)

∗Corresponding author: l.rajkowski@mimuw.edu.pl
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Definition 1. The Chinese Restaurant Process with parameter α is a Markov chain
of random partitions (Jn)n∈N, where Jn is a partition of [n] = {1, 2, . . . , n}, that
satisfies

Jn+1 | Jn = {J1, . . . , Jk} =

{
{J1, . . . , Ji ∪ {n+ 1}, . . . , Jk} with prob. |Ji|n+α

{J1, . . . , Jk, {n+ 1}} with prob. α
n+α

.

(2)
We write Jn ∼ CRP(α)n. Clearly, the probability of a given partition J of [n] is

given by α|J |

(α)↑|J |

∏
J∈J (|J | − 1)!, where (α)↑k = α(α+ 1) . . . (α+ k − 1).

Suppose we want to model clustered multivariate data, which within every cluster
have the Gaussian distribution with known covariance matrix Σ. In this case we
may sample the partition of the data from the Chinese Restaurant Process and
then independently for every cluster sample the cluster mean from some predefined
Gaussian distribution and sample the observations belonging to that cluster from
the Gaussian distribution with cluster’s mean and covariance matrix Σ. This model
is formally stated as

J ∼ CRP(α)n

θ = (θJ)J∈J | J
iid∼ N (µ,T)

xJ = (xj)j∈J | J ,θ
iid∼ N (θ,Σ) for J ∈ J .

(3)

where µ ∈ Rd and T,Σ ∈ Rd,d are the hyperparameters of the model. Formulation
(3) is equivalent to the Dirichlet Process Mixture Model with normal distribution
as the base and component measures.
Naturally, the goal is not to simulate data, but to make an inference about the
clustering structure of given data. To this end, we apply the Bayesian approach:
upon receiving the observations we may compute, using Bayes formula, the condi-
tional probability (the posterior) on the space of the partitions of observations. It is
impossible to compute this value exactly since the norming constant is intractable,
but there are MCMC methods of sampling from the posterior. In the article we
investigate the properties of the MAP estimator, i.e. the partition that maximises
the posterior probability. Note that, by Bayes formula, the posterior is proportional
to the joint probability on partitions and observations, which is easy to compute
and in turn is proportional to

C |J |
∏
J∈J

|J |!
|J |(d+2)/2 detR|J|

· exp
{1

2

∑
J∈J
|J | ·

∥∥R−1
|J|R

2xJ
∥∥2
}

=: Qx(J ) (4)

where C = α/
√

detT , R = Σ−1/2, Rm = (Σ−1 + T−1/m)1/2 for m ∈ N, ‖ · ‖ is the
standard Euclidean norm in Rd and xJ = 1

|J|
∑
j∈J xj is the mean of observations

in the cluster J .

Definition 2. The maximal a posteriori (MAP) partition of [n] with observed
x = (xi)

n
i=1 is any partition of [n] that maximises Qx(·) (or, equivalently, the

posterior probability). We denote the maximiser by Ĵ (x).
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2 Results and Examples

Our first result concerns the geometry of the MAP partition. It states that the
convex hulls of the clusters are ‘almost disjoint’ (they may have at most one point
in common, which must be a data point). When the data points are distinct, it
clearly implies that the convex hulls are disjoint (cf. Figure 1).

Proposition 1. For every n ∈ N if J1, J2 ∈ Ĵ (x1, . . . , xn), J1 6= J2 and Ak is the
convex hull of the set {xi : i ∈ Jk} for k = 1, 2 then A1 ∩ A2 is an empty set or a
singleton {xi} for some i ≤ n.

(a) This is a convex parti-
tion.

(b) This is a convex partition
which is not ideal.

(c) This partition is not con-
vex.

Figure 1: Illustration of the convexity property of a partition of the data.

Proposition 2 states that the clusters are of reasonable size; if the sequence of means
of squared Euclidean norms of observations is bounded, then the size of clusters that
intersect any fixed ball is comparable with the number of observations. As a result,
the number of clusters that intersect any fixed ball remains bounded as the number
of observations increases (cf. Figure 2).

Proposition 2. If supn
1
n

∑n
i=1 ‖xn‖2 <∞ then

lim inf
n→∞

min{|J | : J ∈ Ĵ (x1, . . . , xn),∃j∈J‖xj‖ < r}/n > 0

for every r > 0.
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(c) n = 1000

Figure 2: Illustration of Proposition 2. The red circle is arbitrarily fixed and the
clusters it intersects are coloured. The number of observations in each coloured
cluster is proportional to n and the number of these clusters remains bounded as
n→∞.

Now consider a slightly different setting. Let P be a probability distribution on Rd

and let X1, X2, . . . ∼ P . Assume that A is a finite partition of the observation space
Rd into sets with positive P measure. This induces a random partition of indices
in a natural way: two indices are in the same cluster if the respective observations
are in the same element of A. Formally, we consider a partition of [n] given by
JAn =

{
{i ≤ n : xi ∈ A} : A ∈ A

}
(cf. Figure 3). Therefore we can compute

the posterior score of this random partition (computed with respect to our Normal
DPMM model). If we take the n-th root of this value, it converges.

Lemma 1. Let A be a finite partition of Rd consisting of Borel sets with positive P
measure. Then almost surely n

√
QX1:n

(JA) ≈ n
e exp {∆(A)} , where for any finite

family G of measurable sets:

∆(G) =
1

2

∑
G∈G

P (G)
∥∥Σ−1/2E(X | X ∈ G)

∥∥2
+
∑
G∈G

P (G) lnP (G). (5)

Hence, in some sense, the ∆ function measures how well the partition A fits the
probability measure P (according to our DPMM model).

(a) Partition A of the obser-
vation space R2.

(b) JA7 is equal to{
{1}, {2, 7}, {3, 4, 6}, {7}

} (c) We can approximate
105
√
QX

1:105 (JA105)

Figure 3: Illustration of the induced partitions and Lemma 1.
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We already know that the convex hulls of the clusters in the MAP partition are
pairwise disjoint. It implies that in a way the clusters of the MAP are induced
by their convex hulls in the sense given above. It poses a natural question: does
the analogue of Lemma 1 hold for the posterior score of the MAP partition? It is
possible to justify the positive answer when P has a bounded support and the family
of convex sets C is a Glivenko-Cantelli class with respect to P , i.e. supC∈C

∣∣Pn(C)−
P (C)

∣∣ a.s.→ 0 (∗).

Lemma 2. Assume that P has a bounded support and satisfies (∗). Let Ân ={
conv{Xj : j ∈ J} : J ∈ Ĵ

}
. Then n

√
QX1:n(Ĵn)

a.s.
≈ n

e exp{∆(Ân)}.

It should be pointed out that the family of probabilities P that satisfy (∗) is rela-
tively large. For example, in [1] it is proved that if for every C ∈ C the boundary
∂C can be covered by countably many hyperplanes plus a set of P -measure zero,
then (∗) holds for P (so it is true e.g. for distributions continuous with respect to
the Lebesgue measure on Rd).

Lemma 2 allow us to infer about the limits of the MAP partitions for large samples
sizes. In order to formulate this result, we need to consider the symmetric distance
metric over P -measurable sets, which is defined by dP (A,B) = P

(
(A\B)∪(B\A)

)
.

This can be easily extended to a metric dP over finite families of measurable subsets
of Rd. Let M∆ denote the set of finite partitions that maximise the function ∆.

Proposition 3. Assume that P has bounded support and is continuous with respect

to Lebesgue measure. Then M∆ 6= ∅ and infM∈M∆
dP (Ân,M)

a.s.→ 0.

As indicated by the following Proposition 4 and the examples, this may lead to an
inconsistent behaviour of the MAP partition.

Proposition 4. Assume that P has bounded support and is continuous with respect
to Lebesgue measure. Then for every K ∈ N there exists an ε > 0 such that if
‖Σ‖ := supv∈Rd ‖Σv‖/‖v‖ < ε then |Ĵn| > K for sufficiently large n.

Example 1. Let P be the uniform distribution on [−1, 1]. It can be computed (see
[2], Supplement A) that the unique optimiser of the ∆ function is the partition of

[−1, 1] into K segments of equal lengths, where K ≈ Σ−1/2/
√

3. It is worth noting

that the variance of the data within a segment of length 2Σ−1/2/
√

3 is equal to
Σ−1/2, so in this case the MAP clustering splits the data to adjust the empirical
within-group covariance to the model assumptions.

Example 2. Let P be a mixture of two normals: P = 1
2 (ν−1.01 +ν1.01), where νm is

the normal distribution with mean m and variance 1. Choose the model parameters
consistent with the input distribution, i.e. d = α = Σ = T = 1. It can be computed
numerically that ∆({(−∞, 0], (0,∞)}) < 0 = ∆({R}). In this case a partition of
the data into positive and negative is intuitive and for sufficiently large data input
the posterior score for the two clusters partition is smaller than for a single cluster.
This may be taken as an indication of inconsistency of the MAP estimator in this
setting.



The limit properties of the MAP partitions in the Normal DPMMs 101

3 Discussion

It is clear that the setting of our considerations is rather limited. Firstly, the object
of our analysis is a very specific DPM model. It is natural to investigate if these
result hold for different models, for example when we allow the covariance matrices
between clusters to vary. Secondly, the limiting results contained here are proved
in the case where the support of the input distribution is bounded. In this case
the model is clearly misspecified. Extending these results to the case of unbounded
input distribution P would greatly improve the applicability of this work.
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Application of generalized random forests for
survival analysis

Helene Charlotte Rytgaard∗

1Section of Biostatistics, University of Copenhagen

Abstract: We are interested in estimating treatment effects on the absolute risk
of an event in a survival analysis setting. The particular approach taken in this
paper is based on the generalized random forest (GRF) [2] methodology that we
adapt to right-censored data. We formulate the estimation problem in terms of
counterfactual outcomes where both treatment and censoring act as a coarsening
on the underlying survival time, and define our target parameter as the solution
to an inverse probability weighted estimating equation. To grow the forest, we use
a partitioning scheme (splitting criteria) based on the influence function for our
target parameter. The result is a nonparametric estimator for the treatment effect
on survival.

Keywords: Survival analysis, random forests, causal inference, treatment effects,
censored data.

1 Introduction

Estimation of average treatment effects by means of machine learning methods has
applications in fields such as biostatistics and econometrics and is a popular alterna-
tive to parametric and semiparametric methods. This article is concerned with the
adaption of the generalized random forest (GRF) [2] framework, a recent extension
of the original random forest [4] based on subsampling and honesty, to estima-
tion of treatment effects based on right-censored data. The GRF methodology is
formulated in terms of estimating equations of the form,

E
[
ψθ(x),ν(x)(O) |X = x

]
= 0, (1)

for estimation of a parameter θ(x) based on data (Xi, Oi) ∈ X ×O, X ⊆ Rp where
ψθ(x),ν(x)(·) is a scoring function and ν(x) is an optional nuisance parameter. GRFs
have been applied to estimation of heterogeneous treatment effects [12, 2] but not
for censored time-to-event outcomes.

∗Corresponding author: hely@sund.ku.dk
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A random forest consists of trees where each tree recursively splits subsamples of
data using a specific partitioning scheme. Central to the GRF algorithm is that the
partitioning scheme targets specifically the estimation of θ(x). The idea is to label
subjects with the influence function of a local estimator for the target parameter.
Then a split is implemented such as to maximize heterogeneity in the labeled sub-
jects. By averaging over the neighborhoods defined by each tree, the forest outputs
a weighting function that can be used to find solutions to the estimating equation
(1).
To adapt the GRF methodology to the survival analysis setting we consider a specific
estimation equation that involves a Kaplan-Meier integral for which we derive the
influence function. The forest weights define a kernel function based on which we
construct an estimator that solves the estimating equation of interest. That way,
we obtain a nonparametric estimator, allowing for covariate-dependent censoring,
that is targeted directly towards the treatment effect on survival.

2 Setting and notation

Suppose we make n ∈ N independent and identically distributed observations of,

X ∈ Rp, O = (A, T̃ ,∆) ∈ {0, 1} × R+ × {0, 1},

where T̃ is a continuous time-to-event outcome observed under right-censoring,
∆ ∈ {0, 1} is an indicator of event, X ∈ X ⊆ Rp is a vector of baseline covariate
values, and A ∈ {0, 1} is a binary treatment assigned at baseline. We represent

the observed data (X,A, T̃ ,∆) as a many-to-one mapping on the full data structure
(X,T 0, T 1) induced by a coarsening by (A,C) [10, 9]. Here, C is the censoring time
and T a is the uncensored counterfactual event time that would result if treatment
had been set to A = a. The observed survival outcome variables are then given as
T̃ = TA ∧ C and ∆ = 1{TA ≤ C}.
Our interest is in the counterfactual distributions F a(t |x) = P (T a ≤ t |X = x) for
a = 0, 1. We further use the notation F (t, a |x) = P (T ≤ t, A = a |x), G(t, a |x) =

P (C > t,A = a |x), Hδ(t, a |x) = P (T̃ ≤ t,∆ = δ, A = a |X = x) for δ = 0, 1 and

H(t, a |x) = P (T̃ ≥ t, A = a |X = x). For a fixed timepoint t0 > 0, we assume
coarsening at random (CAR) [10, 6], which implies T a ⊥⊥ (C,A) |X, a = 0, 1. We
also assume positivity, P (C > t0, A = a |X) > η > 0, a.s. for a = 0, 1. We note
that, under these assumptions, the conditional density of an observation O (with
respect to an appropriate dominating measure) can be expressed as,

P (T̃ ∈ dt,∆ = 1, A = a |X = x)

= P (T a ∈ dt |X = x)P (C > t,A = a |X = x),

and we have the following relations,

F a(t |x) =
H1(t, a |x)

G(t, a |x)
, G(t, a |x) = R

s∈(0,t]

(
1− H0(ds, a |x)

H(s, a |x)

)
, (2)

where P denotes the product integral [1].



104 H. C. Rytgaard

3 Kernel estimation

We are concerned with estimation of θ(x) = θ1(x)− θ0(x), where,

θa(x) =

∫ ∞
0

1{t > t0} dF a(t |x), a = 0, 1. (3)

The dependence on the timepoint of interest, t0, is implicit in the notation for
θa(x). We note that θa(x) is defined as a functional of the distribution F a of the
unobservable T a. By CAR and positivity, we can rewrite (3) using (2) as,

θa(x) =

∫ ∞
0

1{t > t0}
H1(dt, a |x)

G(t, a |x)
, a = 0, 1. (4)

This corresponds to an inverse probability weighted estimating equation of the form,

E

[ ∑
a∈{0,1}

(2a− 1)

(∫ ∞
0

1{t > t0}
H1(dt, a |x)

G(t, a |x)

)
− θ(x)

∣∣∣∣X = x

]
= 0,

with nuisance parameters (H1, G). We consider the following estimators, for a
kernel weighting function K(x, x′) ≥ 0,

Ĥδ
K(t, a |x) =

n∑
i=1

K(x, xi) 1{T̃i ≤ t,∆i = δ, Ai = a}, for δ = 0, 1,

ĤK(t, a |x) =

n∑
i=1

K(x, xi) 1{T̃i > t,Ai = a}.

The kernel function K(x, x′) is used to place more weight on observations in the
covariate space X that are close to x. We define the estimators,

θ̂K,a(x) =

∫ ∞
0

1{t > t0}
Ĥ1
K(dt, a |x)

ĜK(t, a |x)
, ĜK(t, a |x) =

∏
s≤t

(
1− Ĥ0

K(ds, a |x)

ĤK(s, a |x)

)
.

In the GRF framework we replace the kernel weighting function K(x, x′) by forest-
based weights as we will show in the following.

4 GRF for survival analysis

A random forest consists of a set of B ∈ N trees that each provides a partitioning
of the covariate space. The following outlines the tree building process for the bth

tree in the GRF framework.

1. Subsampling. An index set Jb of size sn < n is sampled randomly from
{1, . . . , n} without replacement.
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2. Honesty. The index set Jb is divided randomly into J 1
b
·∪ J 2

b of sizes bsn/2c
and dsn/2e.

3. Splitting. The tree is grown by recursively implementing binary axis-aligned
splits of the covariates space based on the samples {i : i ∈ J 1

b }. We describe
the particular splitting rule used for estimation of our target parameter below.

The randomness induced by subsampling together with randomly selecting a smaller
set of variables as candidates for a split ensures diversity of the different trees of
the forest.
Splitting is central to the tree building scheme. In the GRF framework, splitting
rules are targeted specifically towards the target parameter θ(x). Particularly, the
idea is to implement splits of a mother node M ⊆ X into daughters D1 ·∪D2 = M
so as to maximize,

L(D1, D2) ≡
2∑
j=1

P (X ∈ Dj |X ∈M) E
[(
θ̂Dj − θ(X)

)2 |X ∈ Dj

]
. (5)

Here, θ̂Dj is the estimate of the target parameter in the jth daughter node, cor-
responding to the kernel weight KDj (x, x

′) = 1{x′ ∈ Dj}. As proposed in [2],

we will approximate the splitting criterion in (5) in the following way. Let θ̂M
be the estimator for the target parameter, corresponding to the kernel weight
KM (x, x′) = 1{x′ ∈M}. Define,

Ψ(H1, G) =
∑

a∈{0,1}

(2a− 1)

∫ ∞
0

1{t > t0}
H1(dt, a)

G(t, a)
.

We derive the influence function of the estimator θ̂M = Ψ(Ĥ1
M , ĜM ) as the Gâteaux

derivative of the functional Ψ(H1, G) = Ψ1(H1, G)−Ψ0(H1, G) in direction of δOi
[5, 11]. The influence function is given as IF(H1, G) = IF1(H1, G) − IF0(H1, G),
where, for a = 0, 1,

IFa(H1, G)(Oi) =

(
1{T̃i > t0,∆i = 1, Ai = a}

G(T̃i, a)
+ 1{Ai = a}×(

1−∆i

H(T̃i, a)

∫ ∞
T̃i

1{t > t0}
H1(dt, a)

G(t, a)

−
∫ ∞

0

1{t > t0}
H1(dt, a)

G(t, a)

(∫ t∧T̃i

0

H0(ds, a)(
H(s, a)

)2))
)

−Ψa(H1, G).

Now, we can approximate the splitting criterion defined in (5) by,

L̃(D1, D2) ≡
∑
j=1,2

1∑n
i=1 1{Xi ∈ Dj}

( ∑
{i:Xi∈Dj}

IF(Ĥ1
M , ĜM )(Oi)

)2

. (6)
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The estimated influence function IF(Ĥ1
M , ĜM )(Oi) represents the rate of change

in θ̂M in direction of Oi ∈ Dj , and the criterion defined by (6) seeks to separate

samples in a way such that the estimates in the daughter nodes, θ̂Dj , j = 1, 2, differ

as much as possible from the estimate in the mother node, θ̂M .
Node M specific estimation and the approximation by (6) is defined locally for
X ∈ M . When the splitting process is repeated iteratively, we move through
smaller and smaller neighborhoods defined by each current mother node. We let
Lb(x) ⊆ X denote the terminal node of the bth tree that contains x ∈ X . Forest
weights are obtained by averaging over the neighborhoods Lb(x), b = 1, . . . , B,

αi(x) =
1

B

B∑
b=1

αb,i(x), where, αb,i(x) =
1{Xi ∈ Lb(x), i ∈ J 2

b }∑n
k=1 1{Xk ∈ Lb(x), k ∈ J 2

b }
. (7)

Our forest estimator for θ(x) is defined as,

θ̂α(x) =
∑

a∈{0,1}

(2a− 1)

∫ ∞
0

1{t > t0}
dĤ1

α(t, a)

Ĝα(t, a)
,

using the kernel function defined by the forest K(x, xi) = αi(x). The terminal nodes
shrinking around x for n→∞ implies that K(x, xi) = αi(x)→ δx for n→∞.

5 Discussion

In this paper we have demonstrated how the GRF methodology can be adapted
to right-censored data. We have proposed a forest-based kernel weighted estimator
of the treatment effect on the absolute risk and derived the influence curve to be
used for the recursive splitting scheme. That way, estimation is targeted directly
towards the treatment effect and optimized for the timepoint of interest.
We note that this stands in contrast to the existing random forest algorithms for
survival analysis, see for instance [7, 8]. For these, splitting rules are typically
based on two-sample tests for right-censored data focusing on survival estimation
over the whole time range. Our approach will be useful in the application of average
treatment effects as a variable importance measure. Another extension of interest
deals with competing risks analysis. Here our methods could be used to rank a list
of treatments in terms of their effect on hospitalization with depression or bipolar
disorder in presence of the competing risk of death.
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Bayesian model selection for a family of discrete
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Abstract: Models for univariate count time series can be split into two main
categories. The first one is known as parameter driven models where the time
autocorrelation comes from an underlying latent process for the mean of the discrete
process and the second category is the so called observation driven models where the
current observations are related to the past observations in some way. This allows
for easier construction and estimation of the model but due to the discreteness and
the positivity of the counts special treatment is needed.

In this paper we consider the INARCH model, proposed by [3] and detailed in
[4] and [5]. The models have a feedback mechanism for the mean process which
is related deterministically with its past values together with past observations.
Integer Autoregressive Heteroskedastic (INARCH) models belong to the class of
observation driven models. While INARCH type models have gained interest, the
problem of selecting the order of the terms in the specification of the models is not
developed. We aim at contributing to this direction by proposing a Bayesian model
selection approach for INARCH models.

In our study we consider that the conditional distribution of Yt given the past
values is a Poisson distribution and mean linked linearly or log-linearly with past
values and past observations. We propose a Bayesian approach based on a trans-
dimensional MCMC approach. At the same time we describe Bayesian estimation
for INARCH models which has not been attempted so far. A real data application
will be given. Simulation evidence to support the usage of the approach is also
provided.

Keywords: discrete valued time series; transdimensional MCMC; model selection;

AMS subject classification: 62M10

1 Introduction to INGARCH models

We consider that

Yt | FYt−1 ∼ Poisson(λt), (1)

∗Corresponding author: ptsamtsak@aueb.gr
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where FYt−1 is the σ field generated by {Ys : s ≤ t}. In the linear case parameter λt
given by

λt = b0 +

p∑
i=1

αiλt−i +

q∑
j=1

bjYt−j (2)

Due to construction of 2 we presume that b0, αi and bj are positive and initial values
Y0 and λ0 are fixed. In addition considering Poisson process, conditional mean
E[Yt | Ft−1] and conditional variance V ar[Yt | Ft−1] are equal to the parameter λt.
This model was proposed by [4] based on GLM theory. Conditions of stationarity
in two models are very important because of their use in estimation of parameters
via bayesian methods. A necessary and sufficient condition to be stationary with
the combination of positivity is

0 <

p∑
i=1

αi +

q∑
j=1

bj < 1 (3)

Estimation via classical approaches has been discussed by [3, 4] A modification of
the linear INGARCH model is the log-linear INGARCH model introduced by [5]

Yt | Ft−1 ∼ Poisson(λt = exp(νt)), (4)

where

λt = eb0
p∏
i=1

λαit−i

q∏
j=1

y
bj
t−j (5)

In this model parameters αi,bj and b0 take values in R and both negative and
positive correlation take into account. Equation above is inefficient in computational
methods when zeros are presented as observations in logarithmic scale. So a different
representation was proposed by [5] and it maps zeros of Yt−j into zeros of log(Yt−j+
1)

λt = eb0
p∏
i=1

λαit−i

q∏
j=1

(yt−j + 1)bj (6)

This model is more computationally demanding because λt increase or dicrease
fast accordingly to the parameters’ values αi and bj . In this case conditions of
stationarity, ergodic properties and estimation via classical approaches have been
examined by [5].

2 Trans-dimensional MCMC

Due to intractability of integrals in Bayes factor, MCMC methods for bayesian
model selection have been discussed by [1, 2, 6]. At all of those methods the crucial
problem is the matching of dimensions in the parameter space. An alternative
method for the construction of the parameter space both in nested and non-nested
models has been proposed by [7]. We consider a countable set of models M, a
model indexed by m ∈ M and θm ∈ Θm a vector of unknown parameters. We
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combine all parameter vectors in one mixture parameter vector which take values
of the cartesian product of models’ parameter spaces Θm1 ×Θm2 × · · · ×Θm10 .
Consequently if a model is disconnected from the likelihood then is generated from
pseudopriors and posterior model probabilities are estimated by the following

p̂(M | y) =

∑b
i=1 I(Mi = M)

B
(7)

where B is the total number of iterations and Mi dentes the model we are in the
i-th iteration.

3 Simulation study

In this section we present results from a small simulation experiment aiming at
examining whether our approach can identify the correct structure of the time
series that generated the data. We make use of sample size n=200 close to the one
used later for the application and consider 10 competing models from the linear and
log-linear INARCH family. For examining if this method is appropriate for model
selection in our case where we have nested and non-nested models we consider two
criteria.

CRITERION 1: Each conditional prior must be proper (integrating to one) and
cannot be arbitrarily vague in the sense of almost all of its mass being outside any
believable compact set.

CRITERION 2: (Model selection consistency) If data y have been generated from
model Mi then posterior model probability of model Mi should converge to 1 as
the sample size n −→ ∞.

In our case for the accomplishment of criterion 1 we suggest as pseudopriors normal
densities obtaining mean and variance after ”pilot runs” of MCMC for each model
and considering that those pseudopriors are proper. More specifically we generate
100 datasets of size n=200 for each model and we run a trans-dimensional Markov
chain with length 10000. According to criterion 2 posterior model probability of
model from which we generate the data, must be close to 1 while the probabilities
must be small for the other models. We have compared 10 models, 5 models of the
linear family and five from the log-linear. Looking the results from figure 1 we can
see that even for small sample size we can identify the correct structure with great
success for most of the models. As expected in most cases the preferred model is
one close (in the sense of the parameters setup) which is reasonable.
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Figure 1: Averages of posterior model probabilities after 100 samples of data from
each model

Predictions in time varying prediction volatility in linear and log-linear INGARCH
models can be calculated. A 1-step ahead predictive pmf is defined as

P (λt+1 | y1, y2, . . . yt) =
∑
m∈M

P (λt+1 | y1, . . . yt,m)p(m | y1, . . . yt) (8)

which is an average of the posterior predictive distribution under each model
weighted by their posterior model probabilities. For each parameter vector we
calculate at each iteration λt+1. Each sampled point should be taken with proba-
bility p(m | y1, . . . , yt). Then we obtain the sample of p(λt+1 | m, y) by weighting
all samples of p(λt+1 | y) by the corresponding p(m | y1, . . . , yt).

4 Application

We illustrate our approach by an application to estimate the parameters for each
of five linear and five log-linear INGARCH models and to compare those models.
The data consist of monthly counts of poliomyelitis cases in the United States from
1970 to 1983 (168 observations) reported by the Centres for Disease Control and
discussed in [8] among others. In transdimensional method we concentrate jumps
between five linear and five log-linear INGARCH models when both parameters αi
and bj are positive and less than 1. For the ten linear and log-linear INGARCH
models where parameters αi and bj are all positive and

∑
i αi+

∑
j bj < 1, we apply

trans-dimensional MCMC method of [7] and posterior probabilities are presented in
table 1. The INGARCH(1,1) model is the one mostly visited which indicates that
this is the selected model. Note that the 4 best models are of the linear type while
the log-linear models have much smaller posterior probabilities.
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Model Posterior probability Bayes Factor
INGARCH(1,1) 0.4564 3245.066
INGARCH(0,1) 0.3741 2659.801
INGARCH(1,2) 0.0641 455.838
INGARCH(2,1) 0.0588 418.188

LINGARCH(0,1) 0.0341 242.644
INGARCH(2,2) 0.0085 60.462

LINGARCH(1,2) 0.0023 16.199
LINGARCH(2,1) 0.0016 11.527
LINGARCH(2,2) 0.0001 1.000

Table 1: Posterior probabilities and Bayes factor for 5 INGARCH and 5 Log-
INGARCH models

In our full work we make predictions in time varying prediction volatility in linear
and log-linear INGARCH models.
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On decomposable multi-type Bellman-Harris
branching process for modeling cancer cell

populations with mutations
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Abstract: Metastasis, the spread of cancer cells from a primary tumour to sec-
ondary location(s) in the human organism, is the ultimate cause of death for the
majority of cancer patients. That is why, it is crucial to understand metastases and
their evolution in order to successfully combat the disease.

We consider a metastasized cancer cell population after some medical treatment
(e.g. chemotherapy). Arriving in a different environment the cancer cells may
change their characteristics concerning lifespan and reproduction, thus they may
differentiate into different types. Even if the treatment is effective (resulting in
subcritical reproduction of all cancer cell types), however, it is possible during cell
division for mutations to occur. These mutations can produce a new cancer cell
type that is adapted to the treatment (having supercritical reproduction). Cancer
cells from this new type may lead to a non-extinction process.

As a continuation of [3] we model the above scenario with a decomposable multi-
type Bellman-Harris branching process. Expanding [2] and [4] we investigate rel-
evant quantities such as the probability of extinction of the process until time t
and as t → ∞, the number of occurred supercritical mutants until time t and as
t→∞ and the time until the first occurrence of a mutant starting a non-extinction
process. We also propose numerical schemes for performing calculations.

Keywords: Decomposable multi–type branching processes, Probability of extinc-
tion, Mutations, Waiting time to escape mutant

AMS subject classification: Primary 60J80, Secondary 62P10

1 Notations and model description

We now state the constructive definition of our multi–type Bellman-Harris branch-
ing process (BHBP).

Definition 1. Define a multi–type BHBP with n + 1, n ≥ 1, types of cells, as
follows:
∗Corresponding author: kvitanov@uni-sofia.bg
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1. There are n+ 1, n ≥ 1, different types of cells;

2. All cells from all types reproduce independently. Each cell type i, i = 0, . . . , n,
has a (possibly) distinctive (continuous) distribution Gi(t) = P(τi ≤ t),
Gi(0

+) = 0, of the lifespan τi and a (possibly) distinctive (discrete) distri-
bution {pik}∞k=0,

∑∞
k=0 pik = 1, of the number of cells in the offspring νi. We

denote fi(s) =
∑∞
k=0 piks

k, |s| ≤ 1 to be the probability generating function
(p.g.f.) of the offspring νi;

3. Each descendant of a type-i cell, i = 1, . . . , n can mutate at birth, indepen-
dently of other cells, to any other type, with probabilities uik, 0 ≤ uik ≤ 1, k =
0, . . . , n,

∑n
k=0 uik = 1. Descendants of the mutant type 0 cannot mutate to

another type, i. e. u00 = 1, meaning also that there is no backward mutation.
The process is decomposable;

4. Formally
{

Z(t) =
(
Z0(t), Z1(t), . . . , Zn(t)

)}
t≥0

, where {Zi(t)}t≥0 stands for

the number of cells of type i, i = 0, . . . , n at time t respectively.

A representation of the relationships between cell types is given in Figure 1. The

Figure 1: Flow diagram of transitions between types leading to the decomposable
multi-type BHBP.

interested reader is referred to [1] for related models in discrete time.

2 Number of mutations to type 0

Let us denote by Ii(t) and Ii, i = 1, . . . , n, the random variables (r.v.) being the
number of mutations to type 0 that have so far occurred until time t and the number
of mutations to type 0 during the whole multi-type BHBP respectively, when the
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process starts with a single cell of type i. The p.g.f. of Ii(t) and Ii, i = 1, . . . , n,
will be denoted by

hIi(t)(s) = E(sIi(t)), |s| ≤ 1

and hIi(s) = E(sIi), |s| ≤ 1.

Using the assumption of independence in cell reproduction, in [2] we identify the
recurrence relationships:

Theorem 1. The following integral equations hold:

hIi(t)(s) = 1−Gi(t) +

∫ t

0

fi

(
ui0s+

n∑
r=1

uirhIr(t−y)(s)
)
dGi(y),

hIi(s) = fi

(
ui0s+

n∑
r=1

uirhIr (s)
)
.

From the definitions of the r.v. Ii(t) and Ii it is clear that limt→∞Ii(t) = Ii almost
surely (a.s.). Considering that there is a one-to-one correspondence between r.v.s
and p.g.f.s, it follows that limt→∞hIi(t)(s) = hIi(s), |s| ≤ 1.

3 Probabilities of extinction

We define the probabilities of extinction of the multi–type BHBP before a fixed
time t, as follows:

qi(t) = P
( n∑
m=0

Zm(t) = 0|Zi(0) = 1, Zj(0) = 0, j 6= i
)
, i = 0, . . . , n.

Again, due to the assumption of independence in cell reproduction, as can be seen
in [5], we are able to derive recurrence relationships between qi(t), namely

Theorem 2. The following integral equations hold:

q0(t) =

∫ t

0

f0

(
q0(t− y)

)
dG0(y),

qi(t) =

∫ t

0

fi

( n∑
r=0

uirqr(t− y)
)
dGi(y), i = 1, . . . , n.

Further, we have

Theorem 3. There exist limt→∞ qi(t) = qi, such that qi(t) ≤ qi, ∀t≥0, i = 0, . . . , n.
Moreover, if the types i = 1, . . . , n are subcritical, then the probabilities qi satisfy
the following equations:

q0 = f0(q0),

qi = hIi(q0) = fi

(
ui0q0 +

n∑
r=1

uirhIr (q0)
)
, i = 1, . . . , n.
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4 Time until occurrence of a mutant, starting a
non – extincting multi–type BHBP

We introduce r.v.s Ti, i = 1, . . . , n, denoting the time it takes for the occurrence of
the first mutant, initiating a non–extincting multi–type BHBP, provided that the
process starts with one cell of type i. Such a mutant, leading to a non–extincting
processes, is called “successful” and the fact that it starts such a process is often
paraphrased as “the process escapes extinction”. We define Ti = ∞ as the event
that no “successful” mutant has occurred during a process beginning with one cell
of type i. That way Ti∈(0,∞].

Theorem 4. Assume that types i, i = 1, . . . , n are subcritical. Let the process start
with 1 cell type i, i = 1, . . . , n. Then the distribution of r.v. Ti has the following
properties:

(i)
P(Ti > t) ≡ Qi,t = hIi(t)(q0);

Qi,t = 1−Gi(t) +

∫ t

0

fi(ui0q0 +

n∑
r=1

uirQr,t−y)dGi(y), Qi,0 = 1;

(ii)
P(Ti =∞) = qi = hIi(q0);

In addition if type 0 is supercritical, then

(iii)

E(Ti|Ti <∞) =
1

1− qi

∫ ∞
0

[
hIi(t)(q0)− hIi(q0)

]
dt,

The proof of an extended version of Theorem 4 can be found in [5].

5 Calculation schemes

In this section we will briefly sketch the numerical schemes we use to calculate the
derived quantities. Note that due to the established limit behaviour of hIi(t)(s) and
qi(t) we can obtain hIi(s) and qi by calculating for t sufficiently large.

I. Calculation scheme for hIi(t)(s):

1. Let t = 0. For every i = 1, . . . , n

hIi(0)(s) = 1.

2. Let t = kh, k = 1, 2, . . . . For every i = 1, . . . , n

hIi(kh)(s)≈1−Gi(kh)+

+

k∑
j=1

fi

(
ui0s+

n∑
r=1

uirh
Ir

(
(k−j)h

)(s))×(Gi(jh)−Gi((j − 1)h
))
.
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Derivation:

1. Let t = 0. It is clear that for every i = 1, . . . , n

hIi(0)(s) = 1−Gi(0) = 1.

2. Let t = kh, k = 1, 2, . . . Note that for every i = 1, . . . , n we can write∫ kh

0

fi

(
ui0s+

n∑
r=1

uirhIr(kh−y)(s)
)
dGi(y) =

=

k∑
j=1

∫ jh

(j−1)h

fi

(
ui0s+

n∑
r=1

uirhIr(kh−y)(s)
)
dGi(y).

Approximating the integrals in the sum through the right rectangle rule, we
arrive at:

hIi(kh)(s)≈1−Gi(kh)+

+

k∑
j=1

fi

(
ui0s+

n∑
r=1

uirh
Ir

(
(k−j)h

)(s))×(Gi(jh)−Gi((j − 1)h
))
.

�

II. Calculation scheme for qi(t):

1. Let t = 0. For every i = 0, . . . .n:

qi(0) = P
( n∑
m=0

Zm(0) = 0|Zi(0) = 1, Zj(0) = 0, j 6= i
)

= 0.

2. Let t = kh, k = 1, 2, . . . , i = 1 . . . , n

q0(kh)≈
k∑
j=1

f0

(
q0

(
(k − j)h

))
×
(
G0

(
jh
)
−G0

(
(j − 1)h

))
,

qi(kh)≈
k∑
j=1

fi

( n∑
r=0

uirqr
(
(k − j)h

))
×
(
Gi
(
jh
)
−Gi

(
(j − 1)h

))
.

Derivation: The derivation is analogous to the derivation of the scheme for calcu-
lating hIi(t)(s). �
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